File size: 20,667 Bytes
b38c914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Welcome to the start of your adventure in Agentic AI"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
    "            <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
    "            Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
    "            Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
    "            Well in that case, you're ready!!\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
    "            <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
    "            I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### And please do remember to contact me if I can help\n",
    "\n",
    "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
    "\n",
    "\n",
    "### New to Notebooks like this one? Head over to the guides folder!\n",
    "\n",
    "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
    "- Open extensions (View >> extensions)\n",
    "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
    "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed  \n",
    "Then View >> Explorer to bring back the File Explorer.\n",
    "\n",
    "And then:\n",
    "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
    "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
    "3. Enjoy!\n",
    "\n",
    "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following:  \n",
    "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`);  \n",
    "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`)  \n",
    "2. In the Settings search bar, type \"venv\"  \n",
    "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux).  \n",
    "And then try again.\n",
    "\n",
    "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated:    \n",
    "`conda deactivate`  \n",
    "And if you still have any problems with conda and python versions, it's possible that you will need to run this too:  \n",
    "`conda config --set auto_activate_base false`  \n",
    "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
    "\n",
    "from dotenv import load_dotenv\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Next it's time to load the API keys into environment variables\n",
    "# If this returns false, see the next cell!\n",
    "\n",
    "load_dotenv(override=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Wait, did that just output `False`??\n",
    "\n",
    "If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
    "\n",
    "Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
    "\n",
    "By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
    "            <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
    "            2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
    "            3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "OpenAI API Key exists and begins sk-1fb0b\n"
     ]
    }
   ],
   "source": [
    "# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
    "\n",
    "import os\n",
    "deepseek_api_key = os.getenv('DEEPSEEK_API_KEY')\n",
    "\n",
    "\n",
    "if deepseek_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {deepseek_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now - the all important import statement\n",
    "# If you get an import error - head over to troubleshooting in the Setup folder\n",
    "# Even for other LLM providers like Gemini, you still use this OpenAI import - see Guide 9 for why\n",
    "\n",
    "from openai import OpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now we'll create an instance of the OpenAI class\n",
    "# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
    "# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
    "# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
    "\n",
    "DEEPSEEK_BASE_URL = \"https://api.deepseek.com/v1\"\n",
    "deepseek_api_key = os.getenv(\"DEEPSEEK_API_KEY\")\n",
    "deepseek = OpenAI(base_url=DEEPSEEK_BASE_URL, api_key=deepseek_api_key)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a list of messages in the familiar OpenAI format\n",
    "\n",
    "messages = [{\"role\": \"user\", \"content\": \"What is 2+2?\"}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "That's a classic! \n",
      "\n",
      "2 + 2 equals **4**.\n"
     ]
    }
   ],
   "source": [
    "# And now call it! Any problems, head to the troubleshooting guide\n",
    "# This uses GPT 4.1 nano, the incredibly cheap model\n",
    "# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
    "# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
    "\n",
    "response = deepseek.chat.completions.create(model=\"deepseek-chat\", messages=[{\"role\":\"user\", \"content\": \"what is 2+2?\"}])\n",
    "print(response.choices[0].message.content)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now - let's ask for a question:\n",
    "\n",
    "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
    "messages = [{\"role\": \"user\", \"content\": question}]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "A man has three daughters. When asked their ages, he replies, \"The product of their ages is 36, and the sum of their ages is equal to the number of windows in the building across the street.\" After a moment, the questioner says, \"I need more information to determine their ages.\" The man then adds, \"My eldest daughter has blue eyes.\" What are the ages of the three daughters?\n"
     ]
    }
   ],
   "source": [
    "# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
    "\n",
    "response = deepseek.chat.completions.create(\n",
    "    model=\"deepseek-chat\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "question = response.choices[0].message.content\n",
    "\n",
    "print(question)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "# form a new messages list\n",
    "messages = [{\"role\": \"user\", \"content\": question}]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Let's break down the problem step by step:\n",
      "\n",
      "1. **Product of ages is 36**: Let the ages be \\(a\\), \\(b\\), and \\(c\\) (all positive integers, since ages are typically whole numbers). So, \\(a \\times b \\times c = 36\\).\n",
      "\n",
      "2. **Sum equals the number of windows**: Let \\(S = a + b + c\\). This sum is equal to the number of windows in the building across the street. The questioner sees this number but still needs more information. This implies that there is more than one set of ages that multiply to 36 and have the same sum.\n",
      "\n",
      "3. **After the additional clue \"My eldest daughter has blue eyes\"**: This indicates that there is an eldest daughter, meaning that the ages are not all the same (so no twins among the eldest). This clue resolves the ambiguity.\n",
      "\n",
      "First, list all possible integer triplets \\((a, b, c)\\) such that \\(a \\times b \\times c = 36\\). Since order doesn't matter for product and sum, we consider sets where \\(a \\leq b \\leq c\\) to avoid duplicates.\n",
      "\n",
      "Possible triplets (with \\(a \\leq b \\leq c\\)):\n",
      "- (1, 1, 36): sum = 38\n",
      "- (1, 2, 18): sum = 21\n",
      "- (1, 3, 12): sum = 16\n",
      "- (1, 4, 9): sum = 14\n",
      "- (1, 6, 6): sum = 13\n",
      "- (2, 2, 9): sum = 13\n",
      "- (2, 3, 6): sum = 11\n",
      "- (3, 3, 4): sum = 10\n",
      "\n",
      "Now, the questioner knows the sum (number of windows) but still needs more information. This means that the sum must be the same for multiple triplets. Let's look at the sums:\n",
      "\n",
      "- Sum 38: only (1,1,36)\n",
      "- Sum 21: only (1,2,18)\n",
      "- Sum 16: only (1,3,12)\n",
      "- Sum 14: only (1,4,9)\n",
      "- Sum 13: (1,6,6) and (2,2,9)\n",
      "- Sum 11: only (2,3,6)\n",
      "- Sum 10: only (3,3,4)\n",
      "\n",
      "So, the only sum that appears more than once is 13, with triplets (1,6,6) and (2,2,9). Therefore, the number of windows must be 13.\n",
      "\n",
      "Now, the man adds: \"My eldest daughter has blue eyes.\" This implies that there is a unique eldest daughter (i.e., not twins who are the oldest). In the triplet (1,6,6), there are two eldest (both 6, so twins). In (2,2,9), the eldest is unique (9). Therefore, the ages must be 2, 2, and 9.\n",
      "\n",
      "**Final Answer:**\n",
      "The ages of the three daughters are 2, 2, and 9.\n",
      "\n",
      "\\boxed{2} \\boxed{2} \\boxed{9}\n"
     ]
    }
   ],
   "source": [
    "# Ask it again\n",
    "\n",
    "response = deepseek.chat.completions.create(\n",
    "    model=\"deepseek-chat\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "answer = response.choices[0].message.content\n",
    "print(answer)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/markdown": [
       "Let's break down the problem step by step:\n",
       "\n",
       "1. **Product of ages is 36**: Let the ages be \\(a\\), \\(b\\), and \\(c\\) (all positive integers, since ages are typically whole numbers). So, \\(a \\times b \\times c = 36\\).\n",
       "\n",
       "2. **Sum equals the number of windows**: Let \\(S = a + b + c\\). This sum is equal to the number of windows in the building across the street. The questioner sees this number but still needs more information. This implies that there is more than one set of ages that multiply to 36 and have the same sum.\n",
       "\n",
       "3. **After the additional clue \"My eldest daughter has blue eyes\"**: This indicates that there is an eldest daughter, meaning that the ages are not all the same (so no twins among the eldest). This clue resolves the ambiguity.\n",
       "\n",
       "First, list all possible integer triplets \\((a, b, c)\\) such that \\(a \\times b \\times c = 36\\). Since order doesn't matter for product and sum, we consider sets where \\(a \\leq b \\leq c\\) to avoid duplicates.\n",
       "\n",
       "Possible triplets (with \\(a \\leq b \\leq c\\)):\n",
       "- (1, 1, 36): sum = 38\n",
       "- (1, 2, 18): sum = 21\n",
       "- (1, 3, 12): sum = 16\n",
       "- (1, 4, 9): sum = 14\n",
       "- (1, 6, 6): sum = 13\n",
       "- (2, 2, 9): sum = 13\n",
       "- (2, 3, 6): sum = 11\n",
       "- (3, 3, 4): sum = 10\n",
       "\n",
       "Now, the questioner knows the sum (number of windows) but still needs more information. This means that the sum must be the same for multiple triplets. Let's look at the sums:\n",
       "\n",
       "- Sum 38: only (1,1,36)\n",
       "- Sum 21: only (1,2,18)\n",
       "- Sum 16: only (1,3,12)\n",
       "- Sum 14: only (1,4,9)\n",
       "- Sum 13: (1,6,6) and (2,2,9)\n",
       "- Sum 11: only (2,3,6)\n",
       "- Sum 10: only (3,3,4)\n",
       "\n",
       "So, the only sum that appears more than once is 13, with triplets (1,6,6) and (2,2,9). Therefore, the number of windows must be 13.\n",
       "\n",
       "Now, the man adds: \"My eldest daughter has blue eyes.\" This implies that there is a unique eldest daughter (i.e., not twins who are the oldest). In the triplet (1,6,6), there are two eldest (both 6, so twins). In (2,2,9), the eldest is unique (9). Therefore, the ages must be 2, 2, and 9.\n",
       "\n",
       "**Final Answer:**\n",
       "The ages of the three daughters are 2, 2, and 9.\n",
       "\n",
       "\\boxed{2} \\boxed{2} \\boxed{9}"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from IPython.display import Markdown, display\n",
    "\n",
    "display(Markdown(answer))\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Congratulations!\n",
    "\n",
    "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
    "\n",
    "Next time things get more interesting..."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
    "            <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
    "            First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
    "            Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
    "            Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
    "            We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# First create the messages:\n",
    "\n",
    "messages = [{\"role\": \"user\", \"content\": \"Something here\"}]\n",
    "\n",
    "# Then make the first call:\n",
    "\n",
    "response =\n",
    "\n",
    "# Then read the business idea:\n",
    "\n",
    "business_idea = response.\n",
    "\n",
    "# And repeat! In the next message, include the business idea within the message"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}