Spaces:
Sleeping
Sleeping
File size: 28,730 Bytes
b38c914 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The first big project - Professionally You!\n",
"\n",
"### And, Tool use.\n",
"\n",
"### But first: introducing Pushover\n",
"\n",
"Pushover is a nifty tool for sending Push Notifications to your phone.\n",
"\n",
"It's super easy to set up and install!\n",
"\n",
"Simply visit https://pushover.net/ and click 'Login or Signup' on the top right to sign up for a free account, and create your API keys.\n",
"\n",
"Once you've signed up, on the home screen, click \"Create an Application/API Token\", and give it any name (like Agents) and click Create Application.\n",
"\n",
"Then add 2 lines to your `.env` file:\n",
"\n",
"PUSHOVER_USER=_put the key that's on the top right of your Pushover home screen and probably starts with a u_ \n",
"PUSHOVER_TOKEN=_put the key when you click into your new application called Agents (or whatever) and probably starts with an a_\n",
"\n",
"Remember to save your `.env` file, and run `load_dotenv(override=True)` after saving, to set your environment variables.\n",
"\n",
"Finally, click \"Add Phone, Tablet or Desktop\" to install on your phone."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"# imports\n",
"\n",
"from dotenv import load_dotenv\n",
"from openai import OpenAI\n",
"import json\n",
"import os\n",
"import requests\n",
"from pypdf import PdfReader\n",
"import gradio as gr"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"# The usual start\n",
"\n",
"load_dotenv(override=True)\n",
"deepseek = OpenAI(api_key=os.getenv('DEEPSEEK_API_KEY'), base_url=\"https://api.deepseek.com/v1\")"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Pushover user found and starts with u\n",
"Pushover token found and starts with a\n"
]
}
],
"source": [
"# For pushover\n",
"\n",
"pushover_user = os.getenv(\"PUSHOVER_USER\")\n",
"pushover_token = os.getenv(\"PUSHOVER_TOKEN\")\n",
"pushover_url = \"https://api.pushover.net/1/messages.json\"\n",
"\n",
"if pushover_user:\n",
" print(f\"Pushover user found and starts with {pushover_user[0]}\")\n",
"else:\n",
" print(\"Pushover user not found\")\n",
"\n",
"if pushover_token:\n",
" print(f\"Pushover token found and starts with {pushover_token[0]}\")\n",
"else:\n",
" print(\"Pushover token not found\")"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"def push(message):\n",
" print(f\"Push: {message}\")\n",
" payload = {\"user\": pushover_user, \"token\": pushover_token, \"message\": message}\n",
" requests.post(pushover_url, data=payload)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Push: HEY!!\n"
]
}
],
"source": [
"push(\"HEY!!\")"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"def record_user_details(email, name=\"Name not provided\", notes=\"not provided\"):\n",
" push(f\"Recording interest from {name} with email {email} and notes {notes}\")\n",
" return {\"recorded\": \"ok\"}"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"def record_unknown_question(question):\n",
" push(f\"Recording {question} asked that I couldn't answer\")\n",
" return {\"recorded\": \"ok\"}"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"record_user_details_json = {\n",
" \"name\": \"record_user_details\",\n",
" \"description\": \"Use this tool to record that a user is interested in being in touch and provided an email address\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"email\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The email address of this user\"\n",
" },\n",
" \"name\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The user's name, if they provided it\"\n",
" }\n",
" ,\n",
" \"notes\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"Any additional information about the conversation that's worth recording to give context\"\n",
" }\n",
" },\n",
" \"required\": [\"email\"],\n",
" \"additionalProperties\": False\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"record_unknown_question_json = {\n",
" \"name\": \"record_unknown_question\",\n",
" \"description\": \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
" \"parameters\": {\n",
" \"type\": \"object\",\n",
" \"properties\": {\n",
" \"question\": {\n",
" \"type\": \"string\",\n",
" \"description\": \"The question that couldn't be answered\"\n",
" },\n",
" },\n",
" \"required\": [\"question\"],\n",
" \"additionalProperties\": False\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"tools = [{\"type\": \"function\", \"function\": record_user_details_json},\n",
" {\"type\": \"function\", \"function\": record_unknown_question_json}]"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'type': 'function',\n",
" 'function': {'name': 'record_user_details',\n",
" 'description': 'Use this tool to record that a user is interested in being in touch and provided an email address',\n",
" 'parameters': {'type': 'object',\n",
" 'properties': {'email': {'type': 'string',\n",
" 'description': 'The email address of this user'},\n",
" 'name': {'type': 'string',\n",
" 'description': \"The user's name, if they provided it\"},\n",
" 'notes': {'type': 'string',\n",
" 'description': \"Any additional information about the conversation that's worth recording to give context\"}},\n",
" 'required': ['email'],\n",
" 'additionalProperties': False}}},\n",
" {'type': 'function',\n",
" 'function': {'name': 'record_unknown_question',\n",
" 'description': \"Always use this tool to record any question that couldn't be answered as you didn't know the answer\",\n",
" 'parameters': {'type': 'object',\n",
" 'properties': {'question': {'type': 'string',\n",
" 'description': \"The question that couldn't be answered\"}},\n",
" 'required': ['question'],\n",
" 'additionalProperties': False}}}]"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tools"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"# This function can take a list of tool calls, and run them. This is the IF statement!!\n",
"\n",
"def handle_tool_calls(tool_calls):\n",
" results = []\n",
" for tool_call in tool_calls:\n",
" tool_name = tool_call.function.name\n",
" arguments = json.loads(tool_call.function.arguments)\n",
" print(f\"Tool called: {tool_name}\", flush=True)\n",
"\n",
" # THE BIG IF STATEMENT!!!\n",
"\n",
" if tool_name == \"record_user_details\":\n",
" result = record_user_details(**arguments)\n",
" elif tool_name == \"record_unknown_question\":\n",
" result = record_unknown_question(**arguments)\n",
"\n",
" results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
" return results"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Push: Recording this is a really hard question asked that I couldn't answer\n"
]
},
{
"data": {
"text/plain": [
"{'recorded': 'ok'}"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"globals()[\"record_unknown_question\"](\"this is a really hard question\")"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"# This is a more elegant way that avoids the IF statement.\n",
"\n",
"def handle_tool_calls(tool_calls):\n",
" results = []\n",
" for tool_call in tool_calls:\n",
" tool_name = tool_call.function.name\n",
" arguments = json.loads(tool_call.function.arguments)\n",
" print(f\"Tool called: {tool_name}\", flush=True)\n",
" tool = globals().get(tool_name)\n",
" result = tool(**arguments) if tool else {}\n",
" results.append({\"role\": \"tool\",\"content\": json.dumps(result),\"tool_call_id\": tool_call.id})\n",
" return results"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"reader = PdfReader(\"me/linkedin.pdf\")\n",
"linkedin = \"\"\n",
"for page in reader.pages:\n",
" text = page.extract_text()\n",
" if text:\n",
" linkedin += text\n",
"\n",
"with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
" summary = f.read()\n",
"\n",
"name = \"Pagi\""
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"system_prompt = (\n",
" f\"You are acting as {name}. You are answering questions on {name}'s website, \"\n",
" f\"particularly questions related to {name}'s career, background, skills, and professional expertise. \"\n",
" f\"Your responsibility is to represent {name} faithfully and consistently, as if you were {name} speaking directly. \"\n",
" f\"Highlight {name}'s technical knowledge, career achievements, and ability to orchestrate AI workflows, \"\n",
" f\"while also reflecting {name}'s approachable, insightful, and execution focused personality. \"\n",
" f\"Always be professional, engaging, and concise. Balance expertise with accessibility. \"\n",
" f\"Assume the user may be a potential client, employer, or collaborator, and answer accordingly. \"\n",
" f\"On session start, send the Initial Outreach Message below once before answering any question. \"\n",
" f\"After that, continue normal chat. \"\n",
" f\"\\\\n\\\\n\"\n",
" f\"If you don't know the answer to a question, use your record_unknown_question tool to capture it. \"\n",
" f\"Never invent details beyond the provided summary and LinkedIn profile. \"\n",
" f\"If the user is engaging in casual discussion, respond warmly but always try to steer the conversation \"\n",
" f\"towards professional opportunities or getting in touch. Politely ask for their email and record it \"\n",
" f\"using the record_user_details tool whenever relevant. \"\n",
" f\"\\\\n\\\\n\"\n",
" f\"### Guardrails and Style:\\\\n\"\n",
" f\"* Represent {name}'s background and expertise accurately using only the provided context.\\\\n\"\n",
" f\"* Keep responses clear, structured, and free of jargon unless explained.\\\\n\"\n",
" f\"* Do not use hyphens, em dashes, or overcomplicated formatting.\\\\n\"\n",
" f\"* Avoid speculative or personal details not included in {{summary}} or {{linkedin}}.\\\\n\"\n",
" f\"* Promote responsible, ethical use of technology and AI.\\\\n\"\n",
" f\"* End with a professional, engaging tone that invites further interaction.\\\\n\"\n",
" f\"\\\\n\\\\n\"\n",
" f\"## Summary:\\\\n{summary}\\\\n\\\\n\"\n",
" f\"## LinkedIn Profile:\\\\n{linkedin}\\\\n\\\\n\"\n",
" f\"## Initial Outreach Message:\\\\n\"\n",
" f\"Hello, I am the digital assistant for {name}. I help visitors explore his work in marine engineering and software, and I showcase AI driven solutions he builds. \"\n",
" f\"If you have a challenge, tell me your use case, constraints, and timeline. I can outline a lean pilot, integration approach, and next steps. \"\n",
" f\"Share an email for a quick follow up and I will record it for {name}.\\\\n\\\\n\"\n",
" f\"With this context, please chat with the user, always staying in character as {name}.\"\n",
")\n"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"def chat(message, history):\n",
" messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
" done = False\n",
" while not done:\n",
"\n",
" # This is the call to the LLM - see that we pass in the tools json\n",
"\n",
" response = deepseek.chat.completions.create(model=\"deepseek-chat\", messages=messages, tools=tools)\n",
"\n",
" finish_reason = response.choices[0].finish_reason\n",
" \n",
" # If the LLM wants to call a tool, we do that!\n",
" \n",
" if finish_reason==\"tool_calls\":\n",
" message = response.choices[0].message\n",
" tool_calls = message.tool_calls\n",
" results = handle_tool_calls(tool_calls)\n",
" messages.append(message)\n",
" messages.extend(results)\n",
" else:\n",
" done = True\n",
" return response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"* Running on local URL: http://127.0.0.1:7863\n",
"* To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"ename": "AttributeError",
"evalue": "module 'gradio' has no attribute 'blocks'",
"output_type": "error",
"traceback": [
"\u001b[31m---------------------------------------------------------------------------\u001b[39m",
"\u001b[31mAttributeError\u001b[39m Traceback (most recent call last)",
"\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[56]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43mgr\u001b[49m\u001b[43m.\u001b[49m\u001b[43mChatInterface\u001b[49m\u001b[43m(\u001b[49m\u001b[43mchat\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[43m=\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mmessages\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m.\u001b[49m\u001b[43mlaunch\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[36mFile \u001b[39m\u001b[32mc:\\Users\\HP\\Projects\\agents\\.venv\\Lib\\site-packages\\gradio\\blocks.py:2978\u001b[39m, in \u001b[36mBlocks.launch\u001b[39m\u001b[34m(self, inline, inbrowser, share, debug, max_threads, auth, auth_message, prevent_thread_lock, show_error, server_name, server_port, height, width, favicon_path, ssl_keyfile, ssl_certfile, ssl_keyfile_password, ssl_verify, quiet, show_api, allowed_paths, blocked_paths, root_path, app_kwargs, state_session_capacity, share_server_address, share_server_protocol, share_server_tls_certificate, auth_dependency, max_file_size, enable_monitoring, strict_cors, node_server_name, node_port, ssr_mode, pwa, mcp_server, _frontend, i18n)\u001b[39m\n\u001b[32m 2970\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33manalytics_enabled\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28;01mFalse\u001b[39;00m):\n\u001b[32m 2971\u001b[39m data = {\n\u001b[32m 2972\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mlaunch_method\u001b[39m\u001b[33m\"\u001b[39m: \u001b[33m\"\u001b[39m\u001b[33mbrowser\u001b[39m\u001b[33m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m inbrowser \u001b[38;5;28;01melse\u001b[39;00m \u001b[33m\"\u001b[39m\u001b[33minline\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m 2973\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mis_google_colab\u001b[39m\u001b[33m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m.is_colab,\n\u001b[32m (...)\u001b[39m\u001b[32m 2976\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mmode\u001b[39m\u001b[33m\"\u001b[39m: \u001b[38;5;28mself\u001b[39m.mode,\n\u001b[32m 2977\u001b[39m }\n\u001b[32m-> \u001b[39m\u001b[32m2978\u001b[39m \u001b[43manalytics\u001b[49m\u001b[43m.\u001b[49m\u001b[43mlaunched_analytics\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 2980\u001b[39m is_in_interactive_mode = \u001b[38;5;28mbool\u001b[39m(\u001b[38;5;28mgetattr\u001b[39m(sys, \u001b[33m\"\u001b[39m\u001b[33mps1\u001b[39m\u001b[33m\"\u001b[39m, sys.flags.interactive))\n\u001b[32m 2982\u001b[39m \u001b[38;5;66;03m# Block main thread if debug==True\u001b[39;00m\n",
"\u001b[36mFile \u001b[39m\u001b[32mc:\\Users\\HP\\Projects\\agents\\.venv\\Lib\\site-packages\\gradio\\analytics.py:176\u001b[39m, in \u001b[36mlaunched_analytics\u001b[39m\u001b[34m(blocks, data)\u001b[39m\n\u001b[32m 173\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m [b.get_block_name() \u001b[38;5;28;01mfor\u001b[39;00m b \u001b[38;5;129;01min\u001b[39;00m components] \u001b[38;5;28;01mif\u001b[39;00m components \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m 174\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m fallback\n\u001b[32m--> \u001b[39m\u001b[32m176\u001b[39m core_components = [get_block_name(c) \u001b[38;5;28;01mfor\u001b[39;00m c \u001b[38;5;129;01min\u001b[39;00m \u001b[43mcore_gradio_components\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m]\n\u001b[32m 178\u001b[39m additional_data = {\n\u001b[32m 179\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mversion\u001b[39m\u001b[33m\"\u001b[39m: get_package_version(),\n\u001b[32m 180\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mis_hosted_notebook\u001b[39m\u001b[33m\"\u001b[39m: blocks.is_hosted_notebook,\n\u001b[32m (...)\u001b[39m\u001b[32m 192\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mis_wasm\u001b[39m\u001b[33m\"\u001b[39m: wasm_utils.IS_WASM,\n\u001b[32m 193\u001b[39m }\n\u001b[32m 194\u001b[39m custom_components = [b \u001b[38;5;28;01mfor\u001b[39;00m b \u001b[38;5;129;01min\u001b[39;00m blocks_telemetry \u001b[38;5;28;01mif\u001b[39;00m b \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m core_components]\n",
"\u001b[36mFile \u001b[39m\u001b[32mc:\\Users\\HP\\Projects\\agents\\.venv\\Lib\\site-packages\\gradio\\utils.py:661\u001b[39m, in \u001b[36mcore_gradio_components\u001b[39m\u001b[34m()\u001b[39m\n\u001b[32m 658\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mcore_gradio_components\u001b[39m():\n\u001b[32m 659\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m [\n\u001b[32m 660\u001b[39m class_\n\u001b[32m--> \u001b[39m\u001b[32m661\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m class_ \u001b[38;5;129;01min\u001b[39;00m \u001b[43mget_all_components\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 662\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m class_.\u001b[34m__module__\u001b[39m.startswith(\u001b[33m\"\u001b[39m\u001b[33mgradio.\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 663\u001b[39m ]\n",
"\u001b[36mFile \u001b[39m\u001b[32mc:\\Users\\HP\\Projects\\agents\\.venv\\Lib\\site-packages\\gradio\\utils.py:635\u001b[39m, in \u001b[36mget_all_components\u001b[39m\u001b[34m()\u001b[39m\n\u001b[32m 630\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mget_all_components\u001b[39m() -> \u001b[38;5;28mlist\u001b[39m[\u001b[38;5;28mtype\u001b[39m[Component] | \u001b[38;5;28mtype\u001b[39m[BlockContext]]:\n\u001b[32m 631\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mgradio\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mgr\u001b[39;00m\n\u001b[32m 633\u001b[39m classes_to_check = (\n\u001b[32m 634\u001b[39m gr.components.Component.__subclasses__()\n\u001b[32m--> \u001b[39m\u001b[32m635\u001b[39m + \u001b[43mgr\u001b[49m\u001b[43m.\u001b[49m\u001b[43mblocks\u001b[49m.BlockContext.__subclasses__() \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[32m 636\u001b[39m )\n\u001b[32m 637\u001b[39m subclasses = []\n\u001b[32m 639\u001b[39m \u001b[38;5;28;01mwhile\u001b[39;00m classes_to_check:\n",
"\u001b[31mAttributeError\u001b[39m: module 'gradio' has no attribute 'blocks'"
]
}
],
"source": [
"gr.ChatInterface(chat, type=\"messages\").launch()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## And now for deployment\n",
"\n",
"This code is in `app.py`\n",
"\n",
"We will deploy to HuggingFace Spaces.\n",
"\n",
"Before you start: remember to update the files in the \"me\" directory - your LinkedIn profile and summary.txt - so that it talks about you! Also change `self.name = \"Ed Donner\"` in `app.py`.. \n",
"\n",
"Also check that there's no README file within the 1_foundations directory. If there is one, please delete it. The deploy process creates a new README file in this directory for you.\n",
"\n",
"1. Visit https://huggingface.co and set up an account \n",
"2. From the Avatar menu on the top right, choose Access Tokens. Choose \"Create New Token\". Give it WRITE permissions - it needs to have WRITE permissions! Keep a record of your new key. \n",
"3. In the Terminal, run: `uv tool install 'huggingface_hub[cli]'` to install the HuggingFace tool, then `hf auth login` to login at the command line with your key. Afterwards, run `hf auth whoami` to check you're logged in \n",
"4. Take your new token and add it to your .env file: `HF_TOKEN=hf_xxx` for the future\n",
"5. From the 1_foundations folder, enter: `uv run gradio deploy` \n",
"6. Follow its instructions: name it \"career_conversation\", specify app.py, choose cpu-basic as the hardware, say Yes to needing to supply secrets, provide your openai api key, your pushover user and token, and say \"no\" to github actions. \n",
"\n",
"Thank you Robert, James, Martins, Andras and Priya for these tips. \n",
"Please read the next 2 sections - how to change your Secrets, and how to redeploy your Space (you may need to delete the README.md that gets created in this 1_foundations directory).\n",
"\n",
"#### More about these secrets:\n",
"\n",
"If you're confused by what's going on with these secrets: it just wants you to enter the key name and value for each of your secrets -- so you would enter: \n",
"`OPENAI_API_KEY` \n",
"Followed by: \n",
"`sk-proj-...` \n",
"\n",
"And if you don't want to set secrets this way, or something goes wrong with it, it's no problem - you can change your secrets later: \n",
"1. Log in to HuggingFace website \n",
"2. Go to your profile screen via the Avatar menu on the top right \n",
"3. Select the Space you deployed \n",
"4. Click on the Settings wheel on the top right \n",
"5. You can scroll down to change your secrets (Variables and Secrets section), delete the space, etc.\n",
"\n",
"#### And now you should be deployed!\n",
"\n",
"If you want to completely replace everything and start again with your keys, you may need to delete the README.md that got created in this 1_foundations folder.\n",
"\n",
"Here is mine: https://huggingface.co/spaces/ed-donner/Career_Conversation\n",
"\n",
"I just got a push notification that a student asked me how they can become President of their country 😂😂\n",
"\n",
"For more information on deployment:\n",
"\n",
"https://www.gradio.app/guides/sharing-your-app#hosting-on-hf-spaces\n",
"\n",
"To delete your Space in the future: \n",
"1. Log in to HuggingFace\n",
"2. From the Avatar menu, select your profile\n",
"3. Click on the Space itself and select the settings wheel on the top right\n",
"4. Scroll to the Delete section at the bottom\n",
"5. ALSO: delete the README file that Gradio may have created inside this 1_foundations folder (otherwise it won't ask you the questions the next time you do a gradio deploy)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
" <span style=\"color:#ff7800;\">• First and foremost, deploy this for yourself! It's a real, valuable tool - the future resume..<br/>\n",
" • Next, improve the resources - add better context about yourself. If you know RAG, then add a knowledge base about you.<br/>\n",
" • Add in more tools! You could have a SQL database with common Q&A that the LLM could read and write from?<br/>\n",
" • Bring in the Evaluator from the last lab, and add other Agentic patterns.\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<table style=\"margin: 0; text-align: left; width:100%\">\n",
" <tr>\n",
" <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
" <img src=\"../assets/business.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
" </td>\n",
" <td>\n",
" <h2 style=\"color:#00bfff;\">Commercial implications</h2>\n",
" <span style=\"color:#00bfff;\">Aside from the obvious (your career alter-ego) this has business applications in any situation where you need an AI assistant with domain expertise and an ability to interact with the real world.\n",
" </span>\n",
" </td>\n",
" </tr>\n",
"</table>"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|