File size: 8,256 Bytes
b38c914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# %%
from openai import OpenAI
import os
from dotenv import load_dotenv
load_dotenv(override=True)

import json

# %%
pushover_user = os.getenv("PUSHOVER_USER")
pushover_token = os.getenv("PUSHOVER_TOKEN")
pushover_url = "https://api.pushover.net/1/messages.json"

def push(message):
    print(message)

# %%
def record_user_details(email, name="Name not provided", notes="not provided"):
    push(f"Recording interest from {name} with email {email} and notes {notes}")
    return {"recorded": "ok"}

record_user_details_json = {
    "name": "record_user_details",
    "description": "Use this tool to record that a user is interested in being in touch and provided an email address",
    "parameters": {
        "type":"object",
        "properties":{
            "email":{
                "type":"string",
                "description":"The email address of this user"
            },
            "name":{
                "type":"string",
                "description":"The user's name, if they provided it"
            },
            "nodes":{
                "type":"string",
                "description":"Any additional information about the conversation that's worth recording to give context"
            }
        },
        "required":["email"],
        "additionalProperties": False
    }
}

# %%
def record_unknown_question(question):
    push(f"Recording {question} asked that I couldn't answer")
    return {"recorded":"ok"}

record_unknown_question_json = {
    "name": "record_unknown_question",
    "description":"Always use this tool to record any question that couldn't be answered as you didn't know the answer",
    "parameters":{
        "type":"object",
        "properties":{
            "question":{
                "type":"string",
                "description":"The question that couldn't be answered"
            }
        },
        "required":["question"],
        "additionalProperties": False
    }
}

# %%
tools = [
    {"type":"function", "function":record_user_details_json},
    {"type":"function", "function":record_unknown_question_json}
]

# %%
def handle_tool_calls(tool_calls):
    results = []
    for tool_call in tool_calls:
        tool_name = tool_call.function.name
        arguments = json.loads(tool_call.function.arguments)
        print(f"tool called {tool_name}", flush=True)
        tool = globals().get(tool_name)
        result = tool(**arguments) if tool else {}
        results.append({"role":"tool", "content":json.dumps(result),"tool_call_id":tool_call.id})

        return results



# %%
from pypdf import PdfReader

linkedin = ''
linkedin_profile = PdfReader('me/Profile.pdf')
for page in linkedin_profile.pages:
    text = page.extract_text()
    if text:
        linkedin += text


# %%

name = 'Jongkook Kim'

from pydantic import BaseModel

class Evaluation(BaseModel):
    is_acceptable: bool
    feedback: str
    avator_response: str 

# %%
avator_system_prompt = f"""You are acting as {name}. You are answering questions on {name}'s website, 

particularly questions related to {name}'s career, background, skills and experience. 

Your responsibility is to represent {name} for interactions on the website as faithfully as possible. 

You are given a Resume of {name}'s background which you can use to answer questions. 

Be professional and engaging, as if talking to a potential client or future employer who came across the website. 

If you don't know the answer, say so.

If you don't know the answer to any question, use your record_unknown_question tool to record the question that you couldn't answer, even if it's about something trivial or unrelated to career. \

If the user is engaging in discussion, try to steer them towards getting in touch via email; ask for their email and record it using your record_user_details tool. """


def avator(message, history, evaluation: Evaluation):
    system_prompt = avator_system_prompt
    system_prompt += f"\n\n## Resume:\n{linkedin}\n\n"
    system_prompt += f"With this context, please chat with the user, always staying in character as {name}."


    if evaluation and not evaluation.is_acceptable:
        print(f"{evaluation.avator_response} is not acceptable. Retry")
        system_prompt += "\n\n## Previous answer rejected\nYou just tried to reply, but the quality control rejected your reply\n"
        system_prompt += f"## Your attempted answer:\n{evaluation.avator_response}\n\n"
        system_prompt += f"## Reason for rejection:\n{evaluation.feedback}\n\n"  

    messages = [{"role":"system", "content": system_prompt}] + history + [{"role":"user", "content": message}] 

    done = False
    while not done:
        llm_client = OpenAI().chat.completions.create(model="gpt-4o-mini", messages=messages, tools=tools)
        print('get response from llm')
        finish_reason = llm_client.choices[0].finish_reason
        if finish_reason == "tool_calls":
            print('this is tool calls')
            llm_response = llm_client.choices[0].message
            tool_calls = llm_response.tool_calls
            tool_response = handle_tool_calls(tool_calls)
            messages.append(llm_response)
            messages.extend(tool_response)
        else:
            print('this is message response')
            done = True

    return llm_client.choices[0].message.content

# %%
evaluator_system_prompt = f"You are an evaluator that decides whether a response to a question is acceptable. \

You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \

The Agent is playing the role of {name} and is representing {name} on their website. \

The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \

The Agent has been provided with context on {name} in the form of their Resume details. Here's the information:"

def evaluator_user_prompt(question, avator_response, history):
    user_prompt = f"Here's the conversation between the User and the Agent: \n\n{history}\n\n"
    user_prompt += f"Here's the latest message from the User: \n\n{question}\n\n"
    user_prompt += f"Here's the latest response from the Agent: \n\n{avator_response}\n\n"
    user_prompt += "Please evaluate the response, replying with whether it is acceptable and your feedback."
    return user_prompt

def evaluator(question, avator_response, history) -> Evaluation:
    system_prompt = evaluator_system_prompt + f"## Resume:\n{linkedin}\n\n"
    system_prompt += f"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback."

    messages = [{"role":"system", "content":system_prompt}] + [{"role":"user", "content":evaluator_user_prompt(question, avator_response, history)}]
    llm_client = OpenAI(api_key=os.getenv('GOOGLE_API_KEY'), base_url='https://generativelanguage.googleapis.com/v1beta/openai/')
    evaluation = llm_client.beta.chat.completions.parse(
        model="gemini-2.0-flash",
        messages=messages,
        response_format=Evaluation
    )

    evaluation = evaluation.choices[0].message.parsed
    evaluation.avator_response = avator_response
    return evaluation

# %%
max_attempt = 2

def orchestrator(message, history):
    avator_response = avator(message, history, None)
    print('get response from avator')

    for attempt in range(1, max_attempt + 1):
        print(f'try {attempt} times')

        evaluation = evaluator(message, avator_response, history)
        print('get response from evaluation')

        if not evaluation.is_acceptable:
            print('reponse from avator is not acceptable')
            message_with_feedback = evaluation.feedback + message
            avator_response = avator(message_with_feedback, history, evaluation)
        else:
            print('response from avator is acceptable')
            break

    return avator_response

# %%
import gradio
gradio.ChatInterface(orchestrator, type="messages").launch()