File size: 11,622 Bytes
b38c914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "d1ff97f3",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Important point - please read</h2>\n",
    "            <span style=\"color:#ff7800;\">This is the experiment to analyze the stocks based on the Benjamin Graham's The Intelligent Investor. This tool Analyze any stock symbol from the NSE (National Stock Exchange) or BSE (Bombay Stock Exchange) \n",
    "This is just the learning purpose and no investment advice should be taken from this.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3f99eb40",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c0943f71",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "from dotenv import load_dotenv\n",
    "\n",
    "load_dotenv(override=True)\n",
    "\n",
    "!uv add yfinance pandas\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b86f232b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Install dependencies (only needed once in your env)\n",
    "!uv add yfinance pandas\n",
    "\n",
    "# Import them\n",
    "import yfinance as yf\n",
    "import pandas as pd\n",
    "\n",
    "from IPython.display import Markdown, display"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "09368124",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Example: Reliance Industries on NSE\n",
    "stock_symbol = \"TCS.NS\"  # You can change to TCS.NS, INFY.NS, etc."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "410494b4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# LLM client setup (OpenAI + Groq via OpenAI-compatible API)\n",
    "import os\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "\n",
    "load_dotenv(override=True)\n",
    "\n",
    "OPENAI_API_KEY = os.getenv(\"OPENAI_API_KEY\")\n",
    "GROQ_API_KEY = os.getenv(\"GROQ_API_KEY\")\n",
    "\n",
    "openai_client = OpenAI(api_key=OPENAI_API_KEY) if OPENAI_API_KEY else None\n",
    "# Groq uses OpenAI-compatible endpoint|\n",
    "GROQ_BASE_URL = \"https://api.groq.com/openai/v1\"\n",
    "groq_client = OpenAI(api_key=GROQ_API_KEY, base_url=GROQ_BASE_URL) if GROQ_API_KEY else None\n",
    "\n",
    "print(\n",
    "    f\"OpenAI: {'ON' if openai_client else 'OFF'} | Groq: {'ON' if groq_client else 'OFF'}\"\n",
    ")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a5c38c6f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Helper: compute Benjamin Graham-style checks (simplified for public data)\n",
    "# Note: True Graham analysis needs per-share earnings for multi-year periods and balance-sheet figures.\n",
    "# We use yfinance fields as proxies and document assumptions.\n",
    "import numpy as np\n",
    "\n",
    "\n",
    "def compute_graham_checks(ticker: str):\n",
    "    T = yf.Ticker(ticker)\n",
    "\n",
    "    # Price and trailing PE proxy\n",
    "    info = T.info if hasattr(T, \"info\") else {}\n",
    "    current_price = info.get(\"currentPrice\")\n",
    "    trailing_pe = info.get(\"trailingPE\")\n",
    "    forward_pe = info.get(\"forwardPE\")\n",
    "    peg_ratio = info.get(\"pegRatio\")\n",
    "    dividend_yield = info.get(\"dividendYield\")  # fraction\n",
    "    roe = info.get(\"returnOnEquity\")  # fraction\n",
    "    debt_to_equity = info.get(\"debtToEquity\")  # percent\n",
    "    current_ratio = info.get(\"currentRatio\")\n",
    "    book_value = info.get(\"bookValue\")  # per share\n",
    "    price_to_book = info.get(\"priceToBook\")\n",
    "    profit_margins = info.get(\"profitMargins\")  # fraction\n",
    "\n",
    "    # Conservative thresholds inspired by Graham (adjusted, simplified):\n",
    "    # - PE <= 15 (or <= 20 if growth)  \n",
    "    # - PB <= 1.5 (or PE*PB <= 22.5)  \n",
    "    # - Dividend present preferred  \n",
    "    # - Current ratio >= 1.5 for industrials (approx)  \n",
    "    # - D/E <= 1 (approx)  \n",
    "    # - Stable profitability (we proxy using positive margin and ROE)\n",
    "\n",
    "    pe_ok = trailing_pe is not None and trailing_pe <= 15\n",
    "    pb_ok = price_to_book is not None and price_to_book <= 1.5\n",
    "\n",
    "    combo_ok = False\n",
    "    if (trailing_pe is not None) and (price_to_book is not None):\n",
    "        combo_ok = (trailing_pe * price_to_book) <= 22.5\n",
    "\n",
    "    de_ok = (debt_to_equity is not None) and (debt_to_equity <= 100)  # percent\n",
    "    cr_ok = (current_ratio is not None) and (current_ratio >= 1.5)\n",
    "    div_ok = (dividend_yield is not None) and (dividend_yield > 0)\n",
    "    profitability_ok = (\n",
    "        (profit_margins is not None and profit_margins > 0)\n",
    "        and (roe is not None and roe > 0)\n",
    "    )\n",
    "\n",
    "    checks = {\n",
    "        \"price\": current_price,\n",
    "        \"trailing_pe\": trailing_pe,\n",
    "        \"price_to_book\": price_to_book,\n",
    "        \"pe_ok\": pe_ok,\n",
    "        \"pb_ok\": pb_ok,\n",
    "        \"pe_x_pb_ok\": combo_ok,\n",
    "        \"dividend_yield\": dividend_yield,\n",
    "        \"dividend_ok\": div_ok,\n",
    "        \"debt_to_equity_pct\": debt_to_equity,\n",
    "        \"debt_to_equity_ok\": de_ok,\n",
    "        \"current_ratio\": current_ratio,\n",
    "        \"current_ratio_ok\": cr_ok,\n",
    "        \"profit_margins\": profit_margins,\n",
    "        \"roe\": roe,\n",
    "        \"profitability_ok\": profitability_ok,\n",
    "    }\n",
    "\n",
    "    total_pass = sum(\n",
    "        1\n",
    "        for k in [\n",
    "            \"pe_ok\",\n",
    "            \"pb_ok\",\n",
    "            \"pe_x_pb_ok\",\n",
    "            \"dividend_ok\",\n",
    "            \"debt_to_equity_ok\",\n",
    "            \"current_ratio_ok\",\n",
    "            \"profitability_ok\",\n",
    "        ]\n",
    "        if checks[k]\n",
    "    )\n",
    "    checks[\"passes\"] = total_pass\n",
    "    checks[\"total_criteria\"] = 7\n",
    "    return checks\n",
    "\n",
    "\n",
    "def format_checks_md(ticker: str, checks: dict) -> str:\n",
    "    yn = lambda b: \"\" if b else \"\"\n",
    "    lines = [f\"### Graham-style screen for `{ticker}`\"]\n",
    "    lines.append(\"- Price: \" + str(checks.get(\"price\")))\n",
    "    lines.append(\n",
    "        f\"- PE: {checks.get('trailing_pe')} | PB: {checks.get('price_to_book')} | PE×PB<=22.5: {yn(checks.get('pe_x_pb_ok'))}\"\n",
    "    )\n",
    "    lines.append(f\"- PE<=15: {yn(checks.get('pe_ok'))}\")\n",
    "    lines.append(f\"- PB<=1.5: {yn(checks.get('pb_ok'))}\")\n",
    "    lines.append(\n",
    "        f\"- Dividend yield: {checks.get('dividend_yield')} | Present: {yn(checks.get('dividend_ok'))}\"\n",
    "    )\n",
    "    lines.append(\n",
    "        f\"- D/E%: {checks.get('debt_to_equity_pct')} | <=100%: {yn(checks.get('debt_to_equity_ok'))}\"\n",
    "    )\n",
    "    lines.append(\n",
    "        f\"- Current ratio: {checks.get('current_ratio')} | >=1.5: {yn(checks.get('current_ratio_ok'))}\"\n",
    "    )\n",
    "    lines.append(\n",
    "        f\"- Profit margin: {checks.get('profit_margins')} | ROE: {checks.get('roe')} | Positive: {yn(checks.get('profitability_ok'))}\"\n",
    "    )\n",
    "    lines.append(\n",
    "        f\"- Score: {checks.get('passes')}/{checks.get('total_criteria')} criteria passed\"\n",
    "    )\n",
    "    return \"\\n\".join(lines)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7b1068f3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Run metrics and display\n",
    "checks = compute_graham_checks(stock_symbol)\n",
    "display(Markdown(format_checks_md(stock_symbol, checks)))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e57d502a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# LLM analysis using available provider(s)\n",
    "\n",
    "def analyze_with_llm(summary_markdown: str, provider: str = \"auto\",\n",
    "                      openai_model: str = \"gpt-4o-mini\",\n",
    "                      groq_model: str = \"llama-3.3-70b-versatile\") -> str:\n",
    "    sys_msg = (\n",
    "        \"You are a conservative value-investing analyst using Benjamin Graham principles. \"\n",
    "        \"Explain clearly which checks passed/failed, what that implies, and caveats about proxies. \"\n",
    "        \"Be concise and avoid recommendations; this is educational only.\"\n",
    "    )\n",
    "    user_msg = (\n",
    "        \"Analyze the following Graham-style checklist for a stock. \"\n",
    "        \"Summarize pass/fail, key drivers, and a short risk note.\\n\\n\" + summary_markdown\n",
    "    )\n",
    "\n",
    "    def chat(client, model):\n",
    "        resp = client.chat.completions.create(\n",
    "            model=model,\n",
    "            messages=[\n",
    "                {\"role\": \"system\", \"content\": sys_msg},\n",
    "                {\"role\": \"user\", \"content\": user_msg},\n",
    "            ],\n",
    "            temperature=0.4,\n",
    "            max_tokens=400,\n",
    "        )\n",
    "        return resp.choices[0].message.content\n",
    "\n",
    "    outputs = []\n",
    "    if provider in (\"auto\", \"openai\") and openai_client:\n",
    "        try:\n",
    "            outputs.append((\"OpenAI\", chat(openai_client, openai_model)))\n",
    "        except Exception as e:\n",
    "            outputs.append((\"OpenAI\", f\"Error: {e}\"))\n",
    "\n",
    "    if provider in (\"auto\", \"groq\") and groq_client:\n",
    "        try:\n",
    "            outputs.append((\"Groq\", chat(groq_client, groq_model)))\n",
    "        except Exception as e:\n",
    "            outputs.append((\"Groq\", f\"Error: {e}\"))\n",
    "\n",
    "    if not outputs:\n",
    "        return \"No LLM providers available. Set OPENAI_API_KEY and/or GROQ_API_KEY.\"\n",
    "\n",
    "    merged = []\n",
    "    for name, out in outputs:\n",
    "        merged.append(f\"### {name} analysis\\n\\n\" + (out or \"\"))\n",
    "    return \"\\n\\n---\\n\\n\".join(merged)\n",
    "\n",
    "analysis = analyze_with_llm(format_checks_md(stock_symbol, checks))\n",
    "display(Markdown(analysis))\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}