File size: 9,964 Bytes
fe211d6
 
8a2d3f3
f1b22c3
4ebde26
 
8a2d3f3
 
fe211d6
de4e465
fe211d6
23dafae
fe211d6
 
 
23dafae
 
8a2d3f3
23dafae
8f51460
8a2d3f3
 
4ebde26
23dafae
8a2d3f3
23dafae
8f51460
8a2d3f3
 
cbc09c4
8a2d3f3
4ebde26
 
 
8a2d3f3
4ebde26
41a9246
 
23dafae
8f51460
4ebde26
cbc09c4
4ebde26
 
 
de4e465
4ebde26
 
23dafae
4ebde26
23dafae
8a2d3f3
23dafae
ae048dd
389aa97
ae048dd
 
 
 
 
 
4ebde26
ae048dd
 
 
8a2d3f3
23dafae
8a2d3f3
4ebde26
23dafae
8a2d3f3
 
4ebde26
f1b22c3
23dafae
4ebde26
 
 
f1b22c3
 
41a9246
8a2d3f3
4ebde26
 
f1b22c3
8a2d3f3
8f51460
8a2d3f3
23dafae
8f51460
fe211d6
23dafae
8a2d3f3
8f51460
23dafae
8a2d3f3
23dafae
4ebde26
 
41a9246
23dafae
4ebde26
 
41a9246
8a2d3f3
23dafae
8a2d3f3
8f51460
8a2d3f3
23dafae
 
 
 
8a2d3f3
23dafae
 
 
8a2d3f3
23dafae
 
8a2d3f3
23dafae
 
8a2d3f3
23dafae
 
8a2d3f3
23dafae
8a2d3f3
23dafae
41a9246
f1b22c3
de4e465
23dafae
8a2d3f3
8f51460
23dafae
 
8a2d3f3
23dafae
8a2d3f3
23dafae
8f51460
f1b22c3
8a2d3f3
8f51460
 
8a2d3f3
4ebde26
8f51460
8a2d3f3
f1b22c3
 
8a2d3f3
de4e465
8a2d3f3
f1b22c3
 
4ebde26
 
f1b22c3
41a9246
8a2d3f3
 
23dafae
 
 
8a2d3f3
23dafae
4ebde26
8a2d3f3
f1b22c3
23dafae
 
 
4ebde26
23dafae
 
 
 
8a2d3f3
23dafae
 
cbc09c4
4ebde26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc09c4
23dafae
8a2d3f3
23dafae
 
 
8a2d3f3
23dafae
 
 
 
 
8a2d3f3
23dafae
 
 
 
 
 
 
 
 
 
8a2d3f3
23dafae
8a2d3f3
23dafae
 
 
 
8a2d3f3
23dafae
 
8a2d3f3
23dafae
8a2d3f3
23dafae
cbc09c4
23dafae
cbc09c4
 
8a2d3f3
23dafae
 
 
8a2d3f3
23dafae
8a2d3f3
cbc09c4
23dafae
 
8a2d3f3
cbc09c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import torch
from diffusers import (
    StableDiffusionXLImg2ImgPipeline,
    StableDiffusionInpaintPipeline,
    DDIMScheduler,
    PNDMScheduler,
    EulerDiscreteScheduler,
    DPMSolverMultistepScheduler
)
from PIL import Image, ImageFilter, ImageEnhance
import numpy as np
import cv2

class InteriorDesignerPro:
    def __init__(self):
        self.device = torch.device("cuda")
        self.model_name = "RealVisXL V4.0"
        
        # Проверка GPU
        gpu_name = torch.cuda.get_device_name(0)
        self.is_powerful_gpu = any(gpu in gpu_name for gpu in ['A100', 'H100', 'RTX 4090', 'RTX 3090', 'T4'])
        
        # Основная модель - RealVisXL V4 
        print(f"Loading {self.model_name} on {gpu_name}...")
        self.pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
            "SG161222/RealVisXL_V4.0",
            torch_dtype=torch.float16,
            use_safetensors=True,
            variant="fp16"
        ).to(self.device)
        
        # БЕЗ ЭТИХ СТРОК! Они замедляют H200!
        # self.pipe.enable_model_cpu_offload()
        # self.pipe.enable_vae_slicing()
        
        # Inpainting модель
        try:
            self.inpaint_pipe = StableDiffusionInpaintPipeline.from_pretrained(
                "stabilityai/stable-diffusion-2-inpainting",
                torch_dtype=torch.float16,
                safety_checker=None
            ).to(self.device)
            print("Inpainting model loaded")
        except:
            print("Warning: Using fallback for inpainting")
            self.inpaint_pipe = None

    @torch.inference_mode()
    def apply_style_pro(self, image, style_name, room_type, strength=0.75, quality="balanced"):
        """Применение стиля к изображению"""
        from design_styles import DESIGN_STYLES
        
        style = DESIGN_STYLES.get(style_name, DESIGN_STYLES["Современный минимализм"])

        # Строка 56-57 должна быть:
        if image.width > 768 or image.height > 768:
        image.thumbnail((768, 768), Image.Resampling.LANCZOS)

        # Оптимальные настройки для H200:

             quality_settings = {
            "fast": {"steps": 15, "guidance": 7.0},
            "balanced": {"steps": 20, "guidance": 8.0},
            "ultra": {"steps": 30, "guidance": 9.0}
             }
        
        settings = quality_settings.get(quality, quality_settings["balanced"])
        
        # Промпт для SDXL
        room_specific = style.get("room_specific", {}).get(room_type, "")
        full_prompt = f"{style['prompt']}, {room_specific}, {room_type} interior design, professional photo, high quality, 8k, photorealistic"
        
        # Генерация с SDXL
        result = self.pipe(
            prompt=full_prompt,
            prompt_2=full_prompt,
            negative_prompt=style.get("negative", "low quality, blurry"),
            negative_prompt_2=style.get("negative", "low quality, blurry"),
            image=image,
            strength=strength,
            num_inference_steps=settings["steps"],
            guidance_scale=settings["guidance"],
            original_size=(768, 768),
            target_size=(768, 768)
        ).images[0]
        
        return result
        
    def create_variations(self, image, num_variations=4):
        """Создание вариаций дизайна"""
        variations = []
        base_seed = torch.randint(0, 1000000, (1,)).item()
        
        for i in range(num_variations):
            torch.manual_seed(base_seed + i)
            
            var = self.pipe(
                prompt="interior design variation, same style, different details",
                prompt_2="interior design variation, same style, different details",
                image=image,
                strength=0.4 + (i * 0.05),
                num_inference_steps=20,
                guidance_scale=7.5
            ).images[0]
            
            variations.append(var)
            
        return variations
    
    def create_hdr_lighting(self, image, intensity=0.3):
        """Улучшение освещения в стиле HDR"""
        # Конвертируем в numpy
        img_array = np.array(image)
        
        # Применяем CLAHE для улучшения контраста
        lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
        l, a, b = cv2.split(lab)
        
        clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
        l_clahe = clahe.apply(l)
        
        enhanced_lab = cv2.merge([l_clahe, a, b])
        enhanced_rgb = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2RGB)
        
        # Смешиваем с оригиналом
        result = cv2.addWeighted(img_array, 1-intensity, enhanced_rgb, intensity, 0)
        
        return Image.fromarray(result)
    
    def enhance_details(self, image):
        """Улучшение деталей изображения"""
        # Увеличиваем резкость
        enhancer = ImageEnhance.Sharpness(image)
        sharp = enhancer.enhance(1.5)
        
        # Немного увеличиваем контраст
        enhancer = ImageEnhance.Contrast(sharp)
        contrast = enhancer.enhance(1.1)
        
        return contrast
    
    def change_element(self, image, element, value, strength=0.7):
        """Изменение отдельного элемента интерьера"""
        from design_styles import ROOM_ELEMENTS
        
        element_info = ROOM_ELEMENTS.get(element, {})
        prompt_add = element_info.get("prompt_add", element.lower())
        
        prompt = f"interior with {value} {prompt_add}, professional photo"
        negative = f"old {element}, damaged, ugly"
        
        result = self.pipe(
            prompt=prompt,
            prompt_2=prompt,
            negative_prompt=negative,
            negative_prompt_2=negative,
            image=image,
            strength=strength,
            num_inference_steps=30,
            guidance_scale=8.0
        ).images[0]
        
        return result
    
    def create_style_comparison(self, image, styles, quality="fast"):
        """Создание сравнения стилей"""
        results = []
        
        # Настройки для быстрой генерации
        steps = 15 if quality == "fast" else 25
        
        for style in styles:
            styled = self.apply_style_pro(
                image, 
                style, 
                "living room",
                strength=0.75,
                quality=quality
            )
            results.append((style, styled))
            
        return results


# Динамическое добавление метода для сетки
def _create_comparison_grid(self, results):
    """Создание сетки из результатов"""
    if not results:
        return None
        
    images = [img for _, img in results]
    titles = [title for title, _ in results]
    
    # Определяем размер сетки
    n = len(images)
    cols = min(3, n)
    rows = (n + cols - 1) // cols
    
    # Размер одного изображения
    img_width, img_height = images[0].size
    grid_width = img_width * cols
    grid_height = img_height * rows
    
    # Создаем сетку
    grid = Image.new('RGB', (grid_width, grid_height), 'white')
    
    for idx, (img, title) in enumerate(zip(images, titles)):
        row = idx // cols
        col = idx % cols
        x = col * img_width
        y = row * img_height
        grid.paste(img, (x, y))
    
    return grid

# Добавляем метод к классу
InteriorDesignerPro._create_comparison_grid = _create_comparison_grid


class ObjectRemover:
    """Класс для удаления объектов"""
    
    def __init__(self, inpaint_pipe):
        self.pipe = inpaint_pipe
        self.device = torch.device("cuda")
        
    def remove_objects(self, image, mask):
        """Удаление объектов с изображения"""
        if self.pipe is None:
            # Fallback на простое заполнение
            return self.simple_inpaint(image, mask)
            
        # Используем inpainting pipeline
        result = self.pipe(
            prompt="empty room interior, clean wall, seamless texture",
            negative_prompt="furniture, objects, people, clutter",
            image=image,
            mask_image=mask,
            strength=0.99,
            num_inference_steps=50,
            guidance_scale=7.5
        ).images[0]
        
        return result
        
    def simple_inpaint(self, image, mask):
        """Простое заполнение через OpenCV"""
        img_array = np.array(image)
        mask_array = np.array(mask.convert('L'))
        
        # Инпейнтинг через OpenCV
        result = cv2.inpaint(img_array, mask_array, 3, cv2.INPAINT_TELEA)
        
        return Image.fromarray(result)
        
    def generate_mask_from_text(self, image, text_description, precision=0.3):
        """Генерация маски на основе текстового описания"""
        # Простая маска в центре (заглушка)
        width, height = image.size
        mask = Image.new('L', (width, height), 0)
        
        # Создаем маску в центре
        center_x, center_y = width // 2, height // 2
        radius = int(min(width, height) * precision)
        
        # Рисуем круг
        from PIL import ImageDraw
        draw = ImageDraw.Draw(mask)
        draw.ellipse([center_x - radius, center_y - radius, 
                      center_x + radius, center_y + radius], fill=255)
        
        return mask