Spaces:
Runtime error
Runtime error
Create models.py
Browse files
models.py
ADDED
|
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import (
|
| 3 |
+
StableDiffusionXLImg2ImgPipeline,
|
| 4 |
+
StableDiffusionInpaintPipeline,
|
| 5 |
+
DDIMScheduler,
|
| 6 |
+
PNDMScheduler,
|
| 7 |
+
EulerDiscreteScheduler,
|
| 8 |
+
DPMSolverMultistepScheduler
|
| 9 |
+
)
|
| 10 |
+
from PIL import Image, ImageFilter, ImageEnhance
|
| 11 |
+
import numpy as np
|
| 12 |
+
import cv2
|
| 13 |
+
|
| 14 |
+
class InteriorDesignerPro:
|
| 15 |
+
def __init__(self):
|
| 16 |
+
self.device = torch.device("cuda") # ТОЛЬКО GPU!
|
| 17 |
+
self.model_name = "RealVisXL V4.0"
|
| 18 |
+
|
| 19 |
+
# Проверка GPU
|
| 20 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 21 |
+
self.is_powerful_gpu = any(gpu in gpu_name for gpu in ['A100', 'H100', 'RTX 4090', 'RTX 3090', 'T4', 'A10G'])
|
| 22 |
+
|
| 23 |
+
# Основная модель - RealVisXL V4
|
| 24 |
+
print(f"Loading {self.model_name} on {gpu_name}...")
|
| 25 |
+
self.pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
| 26 |
+
"SG161222/RealVisXL_V4.0",
|
| 27 |
+
torch_dtype=torch.float16,
|
| 28 |
+
use_safetensors=True,
|
| 29 |
+
variant="fp16"
|
| 30 |
+
).to(self.device)
|
| 31 |
+
|
| 32 |
+
# БЕЗ enable_model_cpu_offload() и enable_vae_slicing() - они замедляют H200!
|
| 33 |
+
|
| 34 |
+
# Настройка scheduler для качества
|
| 35 |
+
self.pipe.scheduler = EulerDiscreteScheduler.from_config(self.pipe.scheduler.config)
|
| 36 |
+
|
| 37 |
+
# Inpainting модель
|
| 38 |
+
try:
|
| 39 |
+
self.inpaint_pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 40 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
| 41 |
+
torch_dtype=torch.float16,
|
| 42 |
+
safety_checker=None,
|
| 43 |
+
requires_safety_checker=False,
|
| 44 |
+
local_files_only=False,
|
| 45 |
+
resume_download=True
|
| 46 |
+
).to(self.device)
|
| 47 |
+
print("Inpainting model loaded")
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"Warning: Could not load inpainting model: {e}")
|
| 50 |
+
print("Using img2img as fallback for object removal")
|
| 51 |
+
self.inpaint_pipe = None
|
| 52 |
+
|
| 53 |
+
@torch.inference_mode()
|
| 54 |
+
def apply_style_pro(self, image, style_name, room_type, strength=0.75, quality="balanced", custom_prompt=None, custom_negative=None):
|
| 55 |
+
"""Применение стиля к изображению"""
|
| 56 |
+
from design_styles import DESIGN_STYLES
|
| 57 |
+
|
| 58 |
+
# Ресайз для скорости
|
| 59 |
+
original_size = image.size
|
| 60 |
+
if image.width > 768 or image.height > 768:
|
| 61 |
+
image.thumbnail((768, 768), Image.Resampling.LANCZOS)
|
| 62 |
+
|
| 63 |
+
if style_name == "custom" and custom_prompt:
|
| 64 |
+
# Кастомный промпт
|
| 65 |
+
full_prompt = custom_prompt
|
| 66 |
+
negative = custom_negative or "low quality, blurry"
|
| 67 |
+
else:
|
| 68 |
+
# Предустановленный стиль
|
| 69 |
+
style = DESIGN_STYLES.get(style_name, DESIGN_STYLES["Современный минимализм"])
|
| 70 |
+
room_specific = style.get("room_specific", {}).get(room_type, "")
|
| 71 |
+
full_prompt = f"{style['prompt']}, {room_specific}, {room_type} interior design, professional photo, high quality, 8k, photorealistic"
|
| 72 |
+
negative = style.get("negative", "low quality, blurry")
|
| 73 |
+
|
| 74 |
+
# Настройки качества - оптимизированные для H200
|
| 75 |
+
quality_settings = {
|
| 76 |
+
"fast": {"steps": 15, "guidance": 6.0},
|
| 77 |
+
"balanced": {"steps": 20, "guidance": 7.0},
|
| 78 |
+
"ultra": {"steps": 30, "guidance": 8.0}
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
settings = quality_settings.get(quality, quality_settings["balanced"])
|
| 82 |
+
|
| 83 |
+
# Генерация с SDXL
|
| 84 |
+
result = self.pipe(
|
| 85 |
+
prompt=full_prompt,
|
| 86 |
+
prompt_2=full_prompt, # Для SDXL
|
| 87 |
+
negative_prompt=negative,
|
| 88 |
+
negative_prompt_2=negative, # Для SDXL
|
| 89 |
+
image=image,
|
| 90 |
+
strength=strength,
|
| 91 |
+
num_inference_steps=settings["steps"],
|
| 92 |
+
guidance_scale=settings["guidance"],
|
| 93 |
+
# SDXL параметры - оптимизированные
|
| 94 |
+
original_size=(768, 768),
|
| 95 |
+
target_size=(768, 768)
|
| 96 |
+
).images[0]
|
| 97 |
+
|
| 98 |
+
# Возвращаем к оригинальному размеру если нужно
|
| 99 |
+
if result.size != original_size and max(original_size) <= 1024:
|
| 100 |
+
result = result.resize(original_size, Image.Resampling.LANCZOS)
|
| 101 |
+
|
| 102 |
+
return result
|
| 103 |
+
|
| 104 |
+
def create_variations(self, image, num_variations=4):
|
| 105 |
+
"""Создание вариаций дизайна"""
|
| 106 |
+
variations = []
|
| 107 |
+
base_seed = torch.randint(0, 1000000, (1,)).item()
|
| 108 |
+
|
| 109 |
+
# Ресайз для скорости
|
| 110 |
+
if image.width > 768 or image.height > 768:
|
| 111 |
+
image.thumbnail((768, 768), Image.Resampling.LANCZOS)
|
| 112 |
+
|
| 113 |
+
for i in range(num_variations):
|
| 114 |
+
torch.manual_seed(base_seed + i)
|
| 115 |
+
|
| 116 |
+
var = self.pipe(
|
| 117 |
+
prompt="interior design variation, same style, different details",
|
| 118 |
+
prompt_2="interior design variation, same style, different details",
|
| 119 |
+
image=image,
|
| 120 |
+
strength=0.4 + (i * 0.05),
|
| 121 |
+
num_inference_steps=20, # Меньше шагов для скорости
|
| 122 |
+
guidance_scale=6.0
|
| 123 |
+
).images[0]
|
| 124 |
+
|
| 125 |
+
variations.append(var)
|
| 126 |
+
|
| 127 |
+
return variations
|
| 128 |
+
|
| 129 |
+
def create_hdr_lighting(self, image, intensity=0.3):
|
| 130 |
+
"""Улучшение освещения в стиле HDR"""
|
| 131 |
+
# Конвертируем в numpy
|
| 132 |
+
img_array = np.array(image)
|
| 133 |
+
|
| 134 |
+
# Применяем CLAHE для улучшения контраста
|
| 135 |
+
lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
|
| 136 |
+
l, a, b = cv2.split(lab)
|
| 137 |
+
|
| 138 |
+
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
| 139 |
+
l_clahe = clahe.apply(l)
|
| 140 |
+
|
| 141 |
+
enhanced_lab = cv2.merge([l_clahe, a, b])
|
| 142 |
+
enhanced_rgb = cv2.cvtColor(enhanced_lab, cv2.COLOR_LAB2RGB)
|
| 143 |
+
|
| 144 |
+
# Смешиваем с оригиналом
|
| 145 |
+
result = cv2.addWeighted(img_array, 1-intensity, enhanced_rgb, intensity, 0)
|
| 146 |
+
|
| 147 |
+
return Image.fromarray(result)
|
| 148 |
+
|
| 149 |
+
def enhance_details(self, image):
|
| 150 |
+
"""Улучшение деталей изображения"""
|
| 151 |
+
# Увеличиваем резкость
|
| 152 |
+
enhancer = ImageEnhance.Sharpness(image)
|
| 153 |
+
sharp = enhancer.enhance(1.5)
|
| 154 |
+
|
| 155 |
+
# Немного увеличиваем контраст
|
| 156 |
+
enhancer = ImageEnhance.Contrast(sharp)
|
| 157 |
+
contrast = enhancer.enhance(1.1)
|
| 158 |
+
|
| 159 |
+
return contrast
|
| 160 |
+
|
| 161 |
+
def change_element(self, image, element, value, strength=0.7):
|
| 162 |
+
"""Изменение отдельного элемента интерьера"""
|
| 163 |
+
from design_styles import ROOM_ELEMENTS
|
| 164 |
+
|
| 165 |
+
# Ресайз для скорости
|
| 166 |
+
original_size = image.size
|
| 167 |
+
if image.width > 768 or image.height > 768:
|
| 168 |
+
image.thumbnail((768, 768), Image.Resampling.LANCZOS)
|
| 169 |
+
|
| 170 |
+
element_info = ROOM_ELEMENTS.get(element, {})
|
| 171 |
+
prompt_add = element_info.get("prompt_add", element.lower())
|
| 172 |
+
|
| 173 |
+
prompt = f"interior with {value} {prompt_add}, professional photo"
|
| 174 |
+
negative = f"old {element}, damaged, ugly"
|
| 175 |
+
|
| 176 |
+
result = self.pipe(
|
| 177 |
+
prompt=prompt,
|
| 178 |
+
prompt_2=prompt, # Для SDXL
|
| 179 |
+
negative_prompt=negative,
|
| 180 |
+
negative_prompt_2=negative,
|
| 181 |
+
image=image,
|
| 182 |
+
strength=min(strength, 0.8), # Ограничиваем для скорости
|
| 183 |
+
num_inference_steps=20, # Оптимизировано для H200
|
| 184 |
+
guidance_scale=6.0
|
| 185 |
+
).images[0]
|
| 186 |
+
|
| 187 |
+
# Возвращаем к оригинальному размеру
|
| 188 |
+
if result.size != original_size:
|
| 189 |
+
result = result.resize(original_size, Image.Resampling.LANCZOS)
|
| 190 |
+
|
| 191 |
+
return result
|
| 192 |
+
|
| 193 |
+
def create_style_comparison(self, image, styles, quality="fast"):
|
| 194 |
+
"""Создание сравнения стилей"""
|
| 195 |
+
results = []
|
| 196 |
+
|
| 197 |
+
# Настройки для быстрой генерации
|
| 198 |
+
steps = 15 if quality == "fast" else 20
|
| 199 |
+
|
| 200 |
+
for style in styles:
|
| 201 |
+
styled = self.apply_style_pro(
|
| 202 |
+
image,
|
| 203 |
+
style,
|
| 204 |
+
"living room", # default
|
| 205 |
+
strength=0.75,
|
| 206 |
+
quality=quality
|
| 207 |
+
)
|
| 208 |
+
results.append((style, styled))
|
| 209 |
+
|
| 210 |
+
return results
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class ObjectRemover:
|
| 214 |
+
"""Класс для удаления объектов - оптимизированный"""
|
| 215 |
+
|
| 216 |
+
def __init__(self, inpaint_pipe):
|
| 217 |
+
self.pipe = inpaint_pipe
|
| 218 |
+
self.device = torch.device("cuda")
|
| 219 |
+
|
| 220 |
+
def remove_objects(self, image, mask):
|
| 221 |
+
"""Удаление объектов с изображения"""
|
| 222 |
+
if self.pipe is None:
|
| 223 |
+
# Fallback на простое заполнение
|
| 224 |
+
return self.simple_inpaint(image, mask)
|
| 225 |
+
|
| 226 |
+
try:
|
| 227 |
+
# Используем inpainting pipeline с оптимизированными параметрами
|
| 228 |
+
result = self.pipe(
|
| 229 |
+
prompt="empty room interior, clean wall, seamless texture",
|
| 230 |
+
negative_prompt="furniture, objects, people, clutter",
|
| 231 |
+
image=image,
|
| 232 |
+
mask_image=mask,
|
| 233 |
+
strength=0.95, # Немного меньше для скорости
|
| 234 |
+
num_inference_steps=25, # Оптимизировано!
|
| 235 |
+
guidance_scale=5.0 # Меньше для скорости
|
| 236 |
+
).images[0]
|
| 237 |
+
|
| 238 |
+
return result
|
| 239 |
+
except Exception as e:
|
| 240 |
+
print(f"Inpainting failed: {e}, using OpenCV fallback")
|
| 241 |
+
return self.simple_inpaint(image, mask)
|
| 242 |
+
|
| 243 |
+
def simple_inpaint(self, image, mask):
|
| 244 |
+
"""Простое заполнение через OpenCV - очень быстро"""
|
| 245 |
+
img_array = np.array(image)
|
| 246 |
+
mask_array = np.array(mask.convert('L'))
|
| 247 |
+
|
| 248 |
+
# Инпейнтинг через OpenCV
|
| 249 |
+
result = cv2.inpaint(img_array, mask_array, 3, cv2.INPAINT_TELEA)
|
| 250 |
+
|
| 251 |
+
return Image.fromarray(result)
|
| 252 |
+
|
| 253 |
+
def generate_mask_from_text(self, image, text_description, precision=0.3):
|
| 254 |
+
"""Генерация маски на основе текстового описания"""
|
| 255 |
+
# Простая маска в центре (заглушка)
|
| 256 |
+
# В реальности тут должен быть CLIP или SAM
|
| 257 |
+
width, height = image.size
|
| 258 |
+
mask = Image.new('L', (width, height), 0)
|
| 259 |
+
|
| 260 |
+
# Создаем маску в центре
|
| 261 |
+
center_x, center_y = width // 2, height // 2
|
| 262 |
+
radius = int(min(width, height) * precision)
|
| 263 |
+
|
| 264 |
+
# Рисуем круг
|
| 265 |
+
from PIL import ImageDraw
|
| 266 |
+
draw = ImageDraw.Draw(mask)
|
| 267 |
+
draw.ellipse([center_x - radius, center_y - radius,
|
| 268 |
+
center_x + radius, center_y + radius], fill=255)
|
| 269 |
+
|
| 270 |
+
return mask
|