Spaces:
Sleeping
Sleeping
# streamlit_app.py | |
import streamlit as st | |
import re | |
from sympy import symbols, integrate, exp, pi | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
st.set_page_config(page_title="AI Problem Solver By Mathematically Modelling", page_icon="π§ ") | |
x, t = symbols("x t") | |
def extract_integral(problem_text): | |
match = re.search(r'(\d+)\*?[tx]\^(\d+)', problem_text) | |
limits = re.findall(r'[tx]\s*=\s*([\d\.\w]+)', problem_text) | |
exp_match = re.search(r'(\d+)e\^([\-\+]?\d+\.?\d*)[tx]', problem_text) | |
if 'radioactive' in problem_text or 'half-life' in problem_text: | |
decay_match = re.search(r'(\d+)\s*e\^\s*-\s*(\d+\.?\d*)[tx]', problem_text) | |
if decay_match and len(limits) == 2: | |
N0 = int(decay_match.group(1)) | |
lam = float(decay_match.group(2)) | |
lower, upper = map(lambda v: eval(v, {"pi": pi}), limits) | |
expr = lam * N0 * exp(-lam * t) | |
return f"Total decayed = {integrate(expr, (t, lower, upper)).evalf()} units." | |
if match and len(limits) == 2: | |
coefficient = int(match.group(1)) | |
exponent = int(match.group(2)) | |
lower_limit = eval(limits[0], {"pi": pi}) | |
upper_limit = eval(limits[1], {"pi": pi}) | |
expr = coefficient * x**exponent | |
return f"Accumulated Quantity = {integrate(expr, (x, lower_limit, upper_limit))}" | |
return "Could not parse the integral format." | |
def load_model(): | |
# Change this if you want to fallback to a smaller model on CPU | |
use_light_model = not torch.cuda.is_available() | |
model_name = ( | |
"deepseek-ai/deepseek-math-7b-base" if not use_light_model | |
else "tiiuae/falcon-7b-instruct" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
device_map="auto" if torch.cuda.is_available() else None | |
) | |
return tokenizer, model | |
def run_llm_reasoning(user_question): | |
tokenizer, model = load_model() | |
prompt = f""" | |
Q: Solve the following physics problem using rigorous mathematical reasoning. Do not skip any steps. | |
Problem: {user_question} | |
### Final Answer format: | |
Final Answer: [VARIABLE] = [ANSWER] [UNIT] | |
A:""" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=500, | |
temperature=0.2, | |
repetition_penalty=1.0, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("A:")[-1].strip() | |
# ---------------- UI ---------------- | |
st.title("π§ AI Physics & Math Solver") | |
task_type = st.selectbox("Choose Task Type", ["LLM Reasoning (DeepSeek/Fallback)", "Symbolic Integration"]) | |
user_question = st.text_area("Enter your physics or math question below:") | |
if st.button("Solve"): | |
with st.spinner("Solving..."): | |
if task_type == "LLM Reasoning (DeepSeek/Fallback)": | |
result = run_llm_reasoning(user_question) | |
else: | |
result = extract_integral(user_question) | |
st.subheader("π Answer") | |
st.write(result) | |