Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
# streamlit_app.py
|
2 |
-
#
|
3 |
import streamlit as st
|
4 |
import re
|
5 |
from sympy import symbols, integrate, exp, pi
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
import torch
|
8 |
|
9 |
-
st.set_page_config(page_title="AI
|
10 |
|
11 |
x, t = symbols("x t")
|
12 |
|
13 |
def extract_integral(problem_text):
|
14 |
match = re.search(r'(\d+)\*?[tx]\^(\d+)', problem_text)
|
15 |
-
limits = re.findall(r'[tx]\s*=\s*([\d
|
16 |
exp_match = re.search(r'(\d+)e\^([\-\+]?\d+\.?\d*)[tx]', problem_text)
|
17 |
|
18 |
if 'radioactive' in problem_text or 'half-life' in problem_text:
|
@@ -35,61 +35,61 @@ def extract_integral(problem_text):
|
|
35 |
return "Could not parse the integral format."
|
36 |
|
37 |
@st.cache_resource
|
38 |
-
def
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
)
|
48 |
-
else:
|
49 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
50 |
|
51 |
return tokenizer, model
|
52 |
|
53 |
-
def
|
54 |
-
tokenizer, model =
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
4. Clearly present the final answer.
|
61 |
|
62 |
### Final Answer Format:
|
63 |
Final Answer: [VARIABLE] = [ANSWER] [UNIT]
|
64 |
-
"""
|
65 |
-
prompt = f"Q: Solve the following physics problem using rigorous mathematical reasoning. Do not skip any steps.\n\nProblem: {user_question}\n\n{solution_steps}\nA:"
|
66 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
67 |
|
68 |
-
|
69 |
-
if torch.cuda.is_available():
|
70 |
-
inputs = inputs.to("cuda")
|
71 |
|
72 |
with torch.no_grad():
|
73 |
outputs = model.generate(
|
74 |
**inputs,
|
75 |
max_new_tokens=500,
|
76 |
-
temperature=0.
|
77 |
repetition_penalty=1.0,
|
78 |
eos_token_id=tokenizer.eos_token_id,
|
79 |
pad_token_id=tokenizer.eos_token_id
|
80 |
)
|
|
|
81 |
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("A:")[-1].strip()
|
82 |
|
83 |
-
# ---------------- UI
|
84 |
-
st.title("🧠 AI
|
85 |
|
86 |
-
task_type = st.selectbox("Choose Task Type", ["LLM Reasoning (DeepSeek)", "Symbolic Integration"])
|
87 |
user_question = st.text_area("Enter your physics or math question below:")
|
88 |
|
89 |
if st.button("Solve"):
|
90 |
with st.spinner("Solving..."):
|
91 |
-
if task_type == "LLM Reasoning (DeepSeek)":
|
92 |
-
result =
|
93 |
else:
|
94 |
result = extract_integral(user_question)
|
95 |
|
|
|
1 |
# streamlit_app.py
|
2 |
+
# streamlit_app.py
|
3 |
import streamlit as st
|
4 |
import re
|
5 |
from sympy import symbols, integrate, exp, pi
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
import torch
|
8 |
|
9 |
+
st.set_page_config(page_title="AI Problem Solver By Mathematically Modelling", page_icon="🧠")
|
10 |
|
11 |
x, t = symbols("x t")
|
12 |
|
13 |
def extract_integral(problem_text):
|
14 |
match = re.search(r'(\d+)\*?[tx]\^(\d+)', problem_text)
|
15 |
+
limits = re.findall(r'[tx]\s*=\s*([\d\.\w]+)', problem_text)
|
16 |
exp_match = re.search(r'(\d+)e\^([\-\+]?\d+\.?\d*)[tx]', problem_text)
|
17 |
|
18 |
if 'radioactive' in problem_text or 'half-life' in problem_text:
|
|
|
35 |
return "Could not parse the integral format."
|
36 |
|
37 |
@st.cache_resource
|
38 |
+
def load_model():
|
39 |
+
# Change this if you want to fallback to a smaller model on CPU
|
40 |
+
use_light_model = not torch.cuda.is_available()
|
41 |
+
|
42 |
+
model_name = (
|
43 |
+
"deepseek-ai/deepseek-math-7b-base" if not use_light_model
|
44 |
+
else "tiiuae/falcon-7b-instruct"
|
45 |
+
)
|
46 |
+
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
50 |
+
model_name,
|
51 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
52 |
+
device_map="auto" if torch.cuda.is_available() else None
|
53 |
+
)
|
|
|
|
|
|
|
54 |
|
55 |
return tokenizer, model
|
56 |
|
57 |
+
def run_llm_reasoning(user_question):
|
58 |
+
tokenizer, model = load_model()
|
59 |
+
|
60 |
+
prompt = f"""
|
61 |
+
Q: Solve the following physics problem using rigorous mathematical reasoning. Do not skip any steps.
|
62 |
+
|
63 |
+
Problem: {user_question}
|
|
|
64 |
|
65 |
### Final Answer Format:
|
66 |
Final Answer: [VARIABLE] = [ANSWER] [UNIT]
|
67 |
+
A:"""
|
|
|
|
|
68 |
|
69 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
70 |
|
71 |
with torch.no_grad():
|
72 |
outputs = model.generate(
|
73 |
**inputs,
|
74 |
max_new_tokens=500,
|
75 |
+
temperature=0.2,
|
76 |
repetition_penalty=1.0,
|
77 |
eos_token_id=tokenizer.eos_token_id,
|
78 |
pad_token_id=tokenizer.eos_token_id
|
79 |
)
|
80 |
+
|
81 |
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("A:")[-1].strip()
|
82 |
|
83 |
+
# ---------------- UI ----------------
|
84 |
+
st.title("🧠 AI Physics & Math Solver")
|
85 |
|
86 |
+
task_type = st.selectbox("Choose Task Type", ["LLM Reasoning (DeepSeek/Fallback)", "Symbolic Integration"])
|
87 |
user_question = st.text_area("Enter your physics or math question below:")
|
88 |
|
89 |
if st.button("Solve"):
|
90 |
with st.spinner("Solving..."):
|
91 |
+
if task_type == "LLM Reasoning (DeepSeek/Fallback)":
|
92 |
+
result = run_llm_reasoning(user_question)
|
93 |
else:
|
94 |
result = extract_integral(user_question)
|
95 |
|