Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import transformers | |
| import torch | |
| from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup | |
| from torch import nn, optim | |
| from torch.utils.data import Dataset, DataLoader | |
| import pickle | |
| class_names = ['left', 'neutral', 'right'] | |
| PRE_TRAINED_MODEL_NAME = 'bert-base-uncased' | |
| tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME) | |
| MAX_LEN = 256 | |
| bert_model = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME) | |
| class SentimentClassifier(nn.Module): | |
| def __init__(self, n_classes): | |
| super(SentimentClassifier, self).__init__() | |
| self.bert = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME) | |
| self.drop = nn.Dropout(p=0.4) | |
| self.out = nn.Linear(self.bert.config.hidden_size, n_classes) | |
| def forward(self, input_ids, attention_mask): | |
| _, pooled_output = self.bert( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| return_dict=False | |
| ) | |
| output = self.drop(pooled_output) | |
| return self.out(output) | |
| model = SentimentClassifier(len(class_names)) | |
| model2 = torch.load("model_BERT_2", map_location=torch.device('cpu')) | |
| def result_final(new_article): | |
| encoded_review = tokenizer.encode_plus( | |
| review_text, | |
| max_length=MAX_LEN, | |
| add_special_tokens=True, | |
| return_token_type_ids=False, | |
| padding="max_length", | |
| truncation=True, | |
| return_attention_mask=True, | |
| return_tensors='pt', | |
| ) | |
| input_ids = encoded_review['input_ids'].to(device) | |
| attention_mask = encoded_review['attention_mask'].to(device) | |
| output = model2(input_ids, attention_mask) | |
| _, prediction = torch.max(output, dim=1) | |
| return class_names[prediction] | |
| iface = gr.Interface(fn = result_final, inputs = "text", outputs = ["text"], title = "News Bias Classifer") | |
| iface.launch() | |