Spaces:
Perry1323
/
Runtime error

File size: 8,405 Bytes
3b609b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy

import torch
from torch.nn import CrossEntropyLoss

from peft.utils.integrations import gather_params_ctx


class CPTEmbedding(torch.nn.Module):
    """
    CPTEmbedding is a custom embedding layer designed for Context-aware Prompt Tuning (CPT) in PEFT. It initializes
    embeddings, applies prompt-specific projections, and computes loss using label masks.
    """

    def __init__(self, config, word_embeddings):
        """
        Initializes the CPTEmbedding module.

        Args:
            config (Namespace):
                Configuration object containing model hyperparameters and CPT-specific settings.
            word_embeddings (torch.nn.Embedding):
                The base word embedding layer used to initialize CPT embeddings.
        """
        super().__init__()
        self.config = copy.deepcopy(config)
        num_virtual_tokens = config.num_virtual_tokens

        # Initialize embeddings with virtual token dimensions
        self.embedding = torch.nn.Embedding(num_virtual_tokens, config.token_dim)

        # Initialize embeddings using text-based prompt tuning, if configured
        if not config.inference_mode:
            assert config.num_virtual_tokens == len(config.cpt_token_ids)

            init_token_ids = torch.LongTensor(config.cpt_token_ids).to(word_embeddings.weight.device)
            with gather_params_ctx(word_embeddings.parameters()):
                word_embedding_weights = word_embeddings(init_token_ids).detach().clone()
            word_embedding_weights = word_embedding_weights.to(torch.float32)
            self.embedding.weight = torch.nn.Parameter(word_embedding_weights)

        # Initialize delta embedding with zero weights
        self.delta_embedding = torch.nn.Embedding(num_virtual_tokens, config.token_dim)
        self.delta_embedding.weight.data = torch.zeros_like(self.delta_embedding.weight).to(torch.float32)

        # Apply hook for backward gradient updates
        self.set_updated_tokens()

    def forward(self, indices):
        """
        Computes the prompt embeddings and applies delta adjustments.

        Args:
            indices (torch.Tensor):
                Indices of the tokens to be embedded.

        Returns:
            torch.Tensor:
                Sum of prompt embeddings and delta embeddings.
        """
        with torch.no_grad():
            prompt_embeddings = self.embedding(indices)

        self.delta_embedding.weight.data = self.get_projection()  # Apply epsilon-based projection

        delta_prompt_embeddings = self.delta_embedding(indices)

        return prompt_embeddings + delta_prompt_embeddings

    def set_updated_tokens(self):
        """
        Sets up a backward hook to selectively update token gradients based on the CPT token type mask.
        """
        tensor_ICL_mask = torch.Tensor(self.config.cpt_tokens_type_mask).long()
        mask_input_template = torch.remainder(tensor_ICL_mask, 4) == 1
        mask_input = torch.remainder(tensor_ICL_mask, 4) == 2
        mask_output_template = torch.remainder(tensor_ICL_mask, 4) == 3
        mask = mask_input_template | mask_input | mask_output_template
        mask = mask.view(-1, 1)

        def backward_hook(grad):
            grad = grad * mask.to(grad.device)  # Apply mask to gradients
            return grad

        self.delta_embedding.weight.register_hook(backward_hook)

    def get_epsilon(self):
        cpt_tokens_type_mask = self.config.cpt_tokens_type_mask

        MIN_VALUE = 1e-10

        # Calculate normalized epsilon values for input, output, and format tokens
        normalized_format_eps = self.config.opt_projection_format_epsilon * torch.sqrt(
            torch.Tensor([self.config.token_dim / 2048])
        )
        normalized_input_eps = self.config.opt_projection_epsilon * torch.sqrt(
            torch.Tensor([self.config.token_dim / 2048])
        )

        epsilon = torch.ones_like(torch.Tensor(cpt_tokens_type_mask)).to(torch.float32) * MIN_VALUE
        cpt_tokens_type_mask = torch.Tensor(cpt_tokens_type_mask).long()

        epsilon[(cpt_tokens_type_mask > 0) & (torch.remainder(cpt_tokens_type_mask, 4) == 1)] = normalized_format_eps
        epsilon[(cpt_tokens_type_mask > 0) & (torch.remainder(cpt_tokens_type_mask, 4) == 3)] = normalized_format_eps
        epsilon[(cpt_tokens_type_mask > 0) & (torch.remainder(cpt_tokens_type_mask, 4) == 2)] = normalized_input_eps

        return epsilon

    def get_projection(self):
        """
        Applies epsilon-based projection to the delta embeddings to control their norm.
        """

        # Apply projection to control delta embedding norm
        with torch.no_grad():
            new_embeddings_weights = self.delta_embedding.weight.clone().to(self.delta_embedding.weight.device)
            token_norm = torch.norm(new_embeddings_weights, p=2, dim=1)

            projection_mask = token_norm > 0
            if torch.any(projection_mask):
                epsilon = self.get_epsilon().to(self.delta_embedding.weight.device)
                new_embeddings_weights[projection_mask] *= (
                    epsilon[projection_mask] / (token_norm[projection_mask].clamp(min=epsilon[projection_mask]))
                ).view(-1, 1)
            return new_embeddings_weights

    @staticmethod
    def calculate_loss(base_model_output, labels, cpt_type_mask, config):
        """
        Computes the loss for CPT models with optional exponential decay.

        Args:
            base_model_output (ModelOutput):
                Output from the base model containing logits.
            labels (torch.Tensor):
                Ground-truth labels for the input tokens.
            cpt_type_mask (torch.Tensor):
                Token type mask used for filtering valid loss terms.
            config (Namespace):
                Configuration object containing loss-related hyperparameters.

        Returns:
            ModelOutput:
                The base model output with computed loss.
        """

        device = base_model_output.logits.device

        lm_logits = base_model_output.logits
        labels = labels.to(device)

        # Shift logits and labels for token prediction
        shift_logits = lm_logits[..., :-1, :].contiguous()
        shift_labels = labels[..., 1:].contiguous()
        shift_cpt_type_mask = cpt_type_mask[..., 1:].contiguous()

        shift_labels_bool = (shift_labels.clone().detach() != -100).bool()
        batch_size, seq_length, vocab_size = shift_logits.shape

        # Compute cross-entropy loss
        loss_fct = CrossEntropyLoss(reduction="none", ignore_index=-100)
        loss = loss_fct(
            shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
        )
        loss = loss.view(batch_size, seq_length)
        # Apply exponential decay weights to the loss
        shift_labels_weights = shift_labels_bool.clone().detach().float()

        for i in range(batch_size):
            idx_labels = (shift_cpt_type_mask[i] > 0) & (shift_cpt_type_mask[i] % 4 == 0)
            labels_ids = shift_cpt_type_mask[i][idx_labels].unique()

            exponential_decay = torch.ones_like(shift_cpt_type_mask[i]).to(device=device).float()
            decay_value = 1
            for label_mask_idx in torch.flip(labels_ids, [0]):
                exponential_decay[shift_cpt_type_mask[i] == label_mask_idx] = decay_value
                decay_value *= config.opt_loss_decay_factor
            if config.opt_weighted_loss_type == "decay":
                shift_labels_weights[i] *= exponential_decay

        # Compute the weighted mean loss
        loss = (loss[shift_labels_bool] * shift_labels_weights[shift_labels_bool]).mean()

        base_model_output.loss = loss

        return base_model_output