Spaces:
Sleeping
Sleeping
File size: 13,858 Bytes
561f65d 44777fd 561f65d 44777fd 561f65d 931a76f bec627d 387f325 3937a09 44777fd d233a16 44777fd bec627d 44777fd 561f65d 44777fd 931a76f 4f5ef71 561f65d 519919a 4f5ef71 c76dc8d 519919a 4f5ef71 f8ca812 4f5ef71 931a76f 4f5ef71 775aa53 676ee71 4f5ef71 775aa53 4f5ef71 931a76f 0e43a26 4f5ef71 c76dc8d 4f5ef71 931a76f 44777fd 4f5ef71 44777fd 4f5ef71 44777fd bec627d f8ca812 d233a16 44777fd bec627d 561f65d 931a76f 561f65d bec627d 561f65d bec627d 561f65d 44777fd bec627d 775aa53 0e43a26 775aa53 bec627d 44777fd 775aa53 44777fd 775aa53 f8ca812 44777fd 561f65d 44777fd 561f65d 44777fd 561f65d 44777fd 561f65d bec627d 931a76f 44777fd 931a76f 561f65d 931a76f 08c4a63 44777fd 08c4a63 44777fd 5e6de6d 44777fd 561f65d 931a76f bec627d 931a76f 561f65d 4f5ef71 561f65d 931a76f 561f65d 3937a09 931a76f 561f65d f8ca812 931a76f f8ca812 561f65d 931a76f d233a16 561f65d 931a76f d233a16 561f65d d233a16 931a76f d233a16 561f65d bec627d 561f65d bec627d 931a76f 561f65d bec627d 931a76f bec627d 931a76f 561f65d 44777fd 931a76f 44777fd bec627d f8ca812 561f65d 931a76f 44777fd 931a76f bec627d 561f65d 44777fd 931a76f bec627d 931a76f f8ca812 931a76f 44777fd b373af6 44777fd c76dc8d b373af6 44777fd b373af6 44777fd c76dc8d b373af6 44777fd b373af6 c76dc8d b373af6 c76dc8d b373af6 44777fd b373af6 44777fd b373af6 c76dc8d 44777fd b373af6 44777fd 931a76f 44777fd c9b807e 4f5ef71 c9b807e 519919a 44777fd c9b807e 44777fd c9b807e d233a16 772abbd 44777fd 931a76f bec627d 387f325 931a76f 561f65d c76dc8d 561f65d 4f5ef71 561f65d 44777fd bec627d 561f65d 519919a 65a9c4c 931a76f 44777fd 65a9c4c 931a76f 44777fd 931a76f 44777fd 931a76f 2a55a01 d233a16 2a55a01 561f65d f8ca812 561f65d 44777fd bec627d 931a76f bec627d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
# app.py
import json
import threading
import time
from pathlib import Path
import solara
import pandas as pd
import plotly.graph_objects as go
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# for robust hover/click from the browser
import anywidget
import traitlets as t
import html # for escaping token text in the HTML label
# ---------- Model ----------
MODEL_ID = "Qwen/Qwen3-0.6B" # same as the working HF Space
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
# ---------- Theme & layout (light blue / white / black accents) ----------
theme_css = """
:root{
--primary:#38bdf8; --bg:#ffffff; --text:#0b0f14; --muted:#6b7280; --border:#e5e7eb;
--mono:'ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace';
}
/* Base */
body{ background:var(--bg); color:var(--text); margin:0;}
h1{ margin:6px 0 8px; }
/* Two-column layout */
.app-row { display:flex; align-items:flex-start; gap:16px; } /* was 24px */
.predictions-panel { flex:0 0 320px; position:relative; z-index:10;}/* was 360px */
.plot-panel { flex:1 1 auto; position:relative; z-index:1; overflow:hidden; }
/* Prediction rows (tighter) */
.rowbtn{
width:100%;
padding:6px 10px; /* was 10px 12px */
border-radius:10px; /* was 12px */
border:1px solid var(--border);
background:#fff; color:var(--text);
display:flex; justify-content:flex-start; align-items:center;
text-align:left; cursor:pointer; user-select:none;
font-family: var(--mono);
font-size:13px; /* was default ~14β16 */
line-height:1.15;
letter-spacing:.2px;
margin-bottom:6px; /* explicit, keeps list consistent */
}
.rowbtn:hover{ background:#f7fbff; border-color:#c3e8fb; }
/* New: 4-column grid inside each row button */
.rowbtn-grid{
display:grid;
grid-template-columns: 28px 72px 72px 1fr; /* # | probs | tokenID | token */
column-gap:8px;
align-items:center;
width:100%;
font-family: var(--mono);
font-size:13px;
line-height:1.15;
}
/* Neighbor chips (smaller) */
.badge{
display:inline-block; padding:2px 6px; /* was 2px 8px */
border:1px solid var(--border); border-radius:999px; margin:2px;
font-size:12px; line-height:1.15;
}
"""
# ---------- Reactive state ----------
text_rx = solara.reactive("Twinkle, twinkle, little ")
preds_rx = solara.reactive(pd.DataFrame(columns=["probs", "id", "tok"]))
selected_token_id_rx = solara.reactive(None)
neighbor_list_rx = solara.reactive([])
last_hovered_id_rx = solara.reactive(None)
auto_running_rx = solara.reactive(True)
neigh_msg_rx = solara.reactive("") # message shown when no neighborhood is available
# ---------- Embedding assets ----------
ASSETS = Path("assets/embeddings")
COORDS_PATH = ASSETS / "pca_top5k_coords.json"
NEIGH_PATH = ASSETS / "neighbors_top5k_k40.json"
coords = {}
neighbors = {}
ids_set = set()
if COORDS_PATH.exists() and NEIGH_PATH.exists():
coords = json.loads(COORDS_PATH.read_text("utf-8"))
neighbors = json.loads(NEIGH_PATH.read_text("utf-8"))
ids_set = set(map(int, coords.keys()))
else:
notice_rx.set("Embedding files not found β add assets/embeddings/*.json to enable the map.")
# ---------- Helpers ----------
def display_token_from_id(tid: int) -> str:
toks = tokenizer.convert_ids_to_tokens([int(tid)], skip_special_tokens=True)
t = toks[0] if toks else ""
for lead in ("β", "Δ "):
if t.startswith(lead):
t = t[len(lead):]
t = t.replace("\n","β΅")
return t if t.strip() else "β "
def fmt_row(idx: int, prob: str, tid: int, tok_disp: str) -> str:
# columns: index, probability, token id, token text
return f"{idx:<2} {prob:<7} {tid:<6} {tok_disp}"
# ---------- Prediction ----------
def predict_top10(prompt: str) -> pd.DataFrame:
if not prompt:
return pd.DataFrame(columns=["probs", "id", "tok"])
tokens = tokenizer(prompt, return_tensors="pt", padding=False)
out = model.generate(
**tokens,
max_new_tokens=1,
output_scores=True,
return_dict_in_generate=True,
pad_token_id=tokenizer.eos_token_id,
do_sample=False, # greedy; temp/top_k are ignored (by design)
)
scores = torch.softmax(out.scores[0], dim=-1)
topk = torch.topk(scores, 10)
ids = [int(topk.indices[0, i]) for i in range(10)]
probs = [float(topk.values[0, i]) for i in range(10)]
toks = [tokenizer.decode([i]) for i in ids] # for append
df = pd.DataFrame({"probs": probs, "id": ids, "tok": toks})
df["probs"] = df["probs"].map(lambda p: f"{p:.2%}")
return df
def on_predict():
df = predict_top10(text_rx.value)
preds_rx.set(df)
if len(df) == 0:
return
if selected_token_id_rx.value is None:
preview_token(int(df.iloc[0]["id"])) # only first time
else:
fig_rx.set(highlight(int(selected_token_id_rx.value))) # preserve selection
# ---------- Plot / neighborhood ----------
def base_scatter():
fig = go.Figure()
if coords:
xs, ys = zip(*[coords[k] for k in coords.keys()])
fig.add_trace(go.Scattergl(
x=xs, y=ys, mode="markers",
marker=dict(size=3, opacity=1.0, color="rgba(56,189,248,0.15)"),
hoverinfo="skip",
))
fig.update_layout(
height=380, margin=dict(l=6,r=6,t=6,b=6),
paper_bgcolor="white", plot_bgcolor="white",
xaxis=dict(visible=False), yaxis=dict(visible=False),
showlegend=False,
)
return fig
fig_rx = solara.reactive(base_scatter())
def get_neighbor_list(token_id: int, k: int = 20):
if not ids_set or token_id not in ids_set:
return []
raw = neighbors.get("neighbors", {}).get(str(token_id), [])
return raw[:k]
def highlight(token_id: int):
fig = base_scatter()
# Not in map (or missing map) β clear chips and show message
if not coords or token_id not in ids_set:
neighbor_list_rx.set([])
if not coords:
neigh_msg_rx.set("Embedding map unavailable β add `assets/embeddings/*.json`.")
else:
neigh_msg_rx.set("Neighborhood unavailable for this token (not in the top-5k set).")
return fig
# In map β clear message and draw neighbors/target
neigh_msg_rx.set("")
nbrs = get_neighbor_list(token_id, k=20)
if nbrs:
nx = [coords[str(nid)][0] for nid,_ in nbrs]
ny = [coords[str(nid)][1] for nid,_ in nbrs]
fig.add_trace(go.Scattergl(
x=nx, y=ny, mode="markers",
marker=dict(size=6, color="rgba(56,189,248,0.75)"),
hoverinfo="skip",
))
chips = [(display_token_from_id(int(nid)), float(sim)) for nid,sim in nbrs]
neighbor_list_rx.set(chips)
else:
neighbor_list_rx.set([])
tx, ty = coords[str(token_id)]
fig.add_trace(go.Scattergl(
x=[tx], y=[ty], mode="markers",
marker=dict(size=10, color="rgba(34,211,238,1.0)", line=dict(width=1)),
hoverinfo="skip",
))
return fig
def preview_token(token_id: int):
# print("preview ->", token_id) # enable for debugging in Space logs
token_id = int(token_id)
if last_hovered_id_rx.value == token_id:
return
last_hovered_id_rx.set(token_id)
selected_token_id_rx.set(token_id)
fig_rx.set(highlight(token_id))
def append_token(token_id: int):
# print("append ->", token_id)
decoded = tokenizer.decode([int(token_id)])
text_rx.set(text_rx.value + decoded)
preview_token(int(token_id))
on_predict()
# ---------- Debounced auto-predict ----------
@solara.component
def AutoPredictWatcher():
text = text_rx.value
auto = auto_running_rx.value
def effect():
if not auto:
return
cancelled = False
snap = text
def worker():
time.sleep(0.25)
if not cancelled and snap == text_rx.value:
on_predict()
threading.Thread(target=worker, daemon=True).start()
def cleanup():
nonlocal cancelled
cancelled = True
return cleanup
solara.use_effect(effect, [text, auto])
return solara.Text("", style={"display": "none"})
# ---------- Hover-enabled list (browser) ----------
class HoverList(anywidget.AnyWidget):
"""
Renders the prediction rows in the browser and streams hover/click events
back to Python via synced traitlets. Supports HTML row labels via `label_html`.
"""
_esm = """
export function render({ model, el }) {
const renderList = () => {
const items = model.get('items') || [];
el.innerHTML = "";
const wrap = document.createElement('div');
wrap.style.display = 'flex';
wrap.style.flexDirection = 'column';
items.forEach((item) => {
const { tid, label, label_html } = item;
const btn = document.createElement('button');
btn.className = 'rowbtn';
btn.setAttribute('type', 'button');
btn.setAttribute('role', 'button');
btn.setAttribute('tabindex', '0');
// Prefer HTML layout if provided; fall back to plain text
if (label_html) { btn.innerHTML = label_html; }
else { btn.textContent = label || ""; }
// Hover β preview (bind several events for reliability)
const preview = () => {
model.set('hovered_id', tid);
model.save_changes();
};
btn.addEventListener('mouseenter', preview);
btn.addEventListener('mouseover', preview);
btn.addEventListener('mousemove', preview);
btn.addEventListener('focus', preview);
// Click β append
btn.addEventListener('click', () => {
model.set('clicked_id', tid);
model.save_changes();
});
wrap.appendChild(btn);
});
el.appendChild(wrap);
};
renderList();
model.on('change:items', renderList);
}
"""
items = t.List(trait=t.Dict()).tag(sync=True) # [{tid:int, label?:str, label_html?:str}, ...]
hovered_id = t.Int(allow_none=True).tag(sync=True)
clicked_id = t.Int(allow_none=True).tag(sync=True)
# ---------- Predictions list (uses HoverList) ----------
@solara.component
def PredictionsList():
df = preds_rx.value
with solara.Column(gap="6px", style={"maxWidth": "720px"}):
solara.Markdown("### Prediction")
solara.Text(
" # probs tokenID next predicted",
style={
"color": "var(--muted)",
"fontFamily": 'ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace',
},
)
# Build items for the browser widget
items = []
for i, row in df.iterrows():
tid = int(row["id"])
prob = row["probs"] # already a formatted string like "4.12%"
tok_disp = display_token_from_id(tid)
tok_safe = html.escape(tok_disp) # protect the HTML label
label_html = (
f'<div class="rowbtn-grid">'
f' <span class="c0">{i}</span>'
f' <span class="c1">{prob}</span>'
f' <span class="c2">{tid}</span>'
f' <span class="c3">{tok_safe}</span>'
f'</div>'
)
items.append({"tid": tid, "label_html": label_html}) # <-- note label_html
w = HoverList()
w.items = items
# Hover β preview (updates plot + neighbor chips)
def _on_hover(change):
tid = change["new"]
if tid is not None:
preview_token(int(tid))
w.observe(_on_hover, names="hovered_id")
# Click β append
def _on_click(change):
tid = change["new"]
if tid is not None:
append_token(int(tid))
w.observe(_on_click, names="clicked_id")
solara.display(w)
# ---------- Page ----------
@solara.component
def Page():
solara.Style(theme_css)
with solara.Column(margin=8, gap="10px"):
solara.Markdown("# Next-Token Predictor + Semantic Neighborhood")
solara.Markdown(
"Type text to see AI's top predictions for the next token. "
"Click a token to append it to your text. "
"Hover over a token to preview its **semantic neighborhood**."
)
solara.InputText("Enter text", value=text_rx, continuous_update=True, style={"minWidth":"520px"})
with solara.Row(classes=["app-row"]):
with solara.Column(classes=["predictions-panel"]):
PredictionsList()
with solara.Column(classes=["plot-panel"]):
solara.Markdown("### Semantic Neighborhood")
if not coords:
solara.Markdown("> Embedding map unavailable β add `assets/embeddings/*.json`.")
else:
solara.FigurePlotly(fig_rx.value)
if neighbor_list_rx.value:
solara.Markdown("**Nearest neighbors:**")
with solara.Row(style={"flex-wrap":"wrap"}):
for tok, sim in neighbor_list_rx.value:
solara.HTML(
tag="span",
unsafe_innerHTML=f'<span class="badge">{tok} {(sim*100):.1f}%</span>'
)
elif neigh_msg_rx.value:
solara.Text(neigh_msg_rx.value, style={"color":"var(--muted)"})
AutoPredictWatcher()
# ---------- Kickoff ----------
on_predict()
Page()
|