Spaces:
Running
Running
import os | |
import sys | |
import json | |
from pathlib import Path | |
import tempfile | |
import shutil | |
# Safe imports with fallbacks | |
try: | |
import gradio as gr | |
except ImportError: | |
print("Installing gradio...") | |
os.system(f"{sys.executable} -m pip install gradio") | |
import gradio as gr | |
try: | |
import subprocess | |
except ImportError: | |
subprocess = None | |
try: | |
import torch | |
HAS_TORCH = True | |
except ImportError: | |
HAS_TORCH = False | |
print("PyTorch not available, using CPU mode") | |
# Ensure temp directories exist | |
TEMP_DIR = tempfile.gettempdir() | |
HF_CACHE_DIR = os.path.join(TEMP_DIR, "hf_cache") | |
os.makedirs(HF_CACHE_DIR, exist_ok=True) | |
# Set environment variables safely | |
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0" | |
os.environ["GRADIO_SERVER_PORT"] = "7860" | |
os.environ["HF_HUB_CACHE"] = HF_CACHE_DIR | |
os.environ["HUGGINGFACE_HUB_CACHE"] = HF_CACHE_DIR | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512" | |
def safe_import(module_name, package_name=None): | |
"""Safely import a module with fallback""" | |
if package_name is None: | |
package_name = module_name | |
try: | |
return __import__(module_name.replace("-", "_")) | |
except ImportError: | |
print(f"Module {module_name} not found, functionality limited") | |
return None | |
def setup_environment(): | |
"""Setup environment with error handling""" | |
dependencies = [ | |
"sageattention==1.0.6", | |
"insightface", | |
"facexlib", | |
"diffusers>=0.30.0", | |
"transformers>=4.44.0", | |
"accelerate>=0.34.0", | |
"xformers", | |
"opencv-python", | |
"imageio[ffmpeg]", | |
"moviepy", | |
"librosa", | |
"soundfile" | |
] | |
for dep in dependencies: | |
try: | |
module_name = dep.split("==")[0].split(">=")[0].split("[")[0] | |
safe_import(module_name) | |
except Exception as e: | |
print(f"Could not process {dep}: {e}") | |
if subprocess: | |
try: | |
subprocess.run( | |
[sys.executable, "-m", "pip", "install", dep], | |
check=False, | |
capture_output=True, | |
timeout=30 | |
) | |
except Exception as install_error: | |
print(f"Failed to install {dep}: {install_error}") | |
def download_essential_models(): | |
"""Pre-download models with full error handling""" | |
try: | |
from huggingface_hub import snapshot_download | |
print("Attempting to download Hunyuan Video Avatar models...") | |
try: | |
snapshot_download( | |
repo_id="tencent/HunyuanVideo-Avatar", | |
cache_dir=HF_CACHE_DIR, | |
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"], | |
ignore_patterns=["*.mp4", "*.avi", "*.mov"], | |
resume_download=True, | |
max_workers=2 | |
) | |
except Exception as e: | |
print(f"Could not download HunyuanVideo-Avatar: {e}") | |
try: | |
snapshot_download( | |
repo_id="tencent/HunyuanVideo", | |
cache_dir=HF_CACHE_DIR, | |
allow_patterns=["*.safetensors", "*.json", "*.txt"], | |
ignore_patterns=["*.mp4", "*.avi"], | |
resume_download=True, | |
max_workers=2 | |
) | |
except Exception as e: | |
print(f"Could not download HunyuanVideo: {e}") | |
print("Model download attempt completed") | |
except ImportError: | |
print("huggingface_hub not available, skipping model download") | |
except Exception as e: | |
print(f"Model download error: {e}") | |
def create_hf_config(): | |
"""Create config with error handling""" | |
config = { | |
"model_settings": { | |
"profile": 3, | |
"quantize_transformer": True, | |
"attention_mode": "sage", | |
"compile": False, | |
"teacache": "2.0" | |
}, | |
"avatar_settings": { | |
"max_frames": 120, | |
"resolution": "512x512", | |
"emotion_control": True, | |
"multi_character": True | |
}, | |
"memory_optimization": { | |
"enable_vae_tiling": True, | |
"enable_cpu_offload": True, | |
"max_batch_size": 1, | |
"gradient_checkpointing": True | |
}, | |
"audio_processing": { | |
"sample_rate": 16000, | |
"max_duration": 15, | |
"supported_formats": ["wav", "mp3", "m4a"] | |
} | |
} | |
config_path = os.path.join(TEMP_DIR, "hf_config.json") | |
try: | |
with open(config_path, "w", encoding='utf-8') as f: | |
json.dump(config, f, indent=2) | |
except Exception as e: | |
print(f"Could not save config: {e}") | |
config_path = None | |
return config | |
def create_dummy_video(output_path, duration=5, fps=24, width=512, height=512): | |
"""Create a dummy video file for testing""" | |
try: | |
import numpy as np | |
import cv2 | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) | |
for i in range(duration * fps): | |
# Create gradient frame | |
frame = np.ones((height, width, 3), dtype=np.uint8) * 50 | |
text = f"Frame {i+1}" | |
cv2.putText(frame, text, (width//4, height//2), | |
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2) | |
out.write(frame) | |
out.release() | |
return True | |
except Exception as e: | |
print(f"Could not create video with OpenCV: {e}") | |
# Create empty file as fallback | |
try: | |
with open(output_path, 'wb') as f: | |
f.write(b'dummy video content') | |
return True | |
except: | |
return False | |
class WanGPInterface: | |
"""WanGP Interface with full error handling""" | |
def __init__(self, config): | |
self.config = config or {} | |
self.device = "cpu" | |
if HAS_TORCH: | |
try: | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
except: | |
self.device = "cpu" | |
self.models_loaded = False | |
def load_models(self): | |
"""Load models with error handling""" | |
if self.models_loaded: | |
return True | |
try: | |
print("Loading Hunyuan Video Avatar models (placeholder)...") | |
# Placeholder for actual model loading | |
import time | |
time.sleep(0.5) # Simulate loading | |
self.models_loaded = True | |
print("✅ Models loaded successfully (simulated)!") | |
return True | |
except Exception as e: | |
print(f"Error in model loading: {e}") | |
self.models_loaded = False | |
return False | |
def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"): | |
"""Generate avatar video with comprehensive error handling""" | |
try: | |
# Validate inputs | |
if audio_file is None: | |
return None, "❌ Error: No audio file provided" | |
if avatar_image is None: | |
return None, "❌ Error: No avatar image provided" | |
# Ensure model is loaded | |
if not self.load_models(): | |
print("Models not loaded, using dummy generation") | |
# Create output path | |
output_filename = f"avatar_{os.getpid()}_{id(self)}.mp4" | |
output_path = os.path.join(TEMP_DIR, output_filename) | |
# Create dummy video | |
if create_dummy_video(output_path, duration=5): | |
if os.path.exists(output_path): | |
return output_path, "✅ Video generated successfully (demo mode)!" | |
else: | |
return None, "❌ Error: Failed to create output file" | |
else: | |
return None, "❌ Error: Video generation failed" | |
except Exception as e: | |
error_msg = f"❌ Error in avatar generation: {str(e)}" | |
print(error_msg) | |
return None, error_msg | |
def generate_video(self, prompt, duration=5, resolution="512x512"): | |
"""Generate video from text with error handling""" | |
try: | |
if not prompt: | |
return "❌ Error: No prompt provided" | |
# Parse resolution | |
try: | |
width, height = map(int, resolution.split('x')) | |
except: | |
width, height = 512, 512 | |
# Ensure model is loaded | |
if not self.load_models(): | |
print("Models not loaded, using dummy generation") | |
# Create output path | |
output_filename = f"video_{os.getpid()}_{id(self)}.mp4" | |
output_path = os.path.join(TEMP_DIR, output_filename) | |
# Create dummy video | |
if create_dummy_video(output_path, duration=int(duration), width=width, height=height): | |
if os.path.exists(output_path): | |
return output_path, f"✅ Generated video for prompt: {prompt[:50]}..." | |
else: | |
return None, "❌ Error: Failed to create output file" | |
else: | |
return None, "❌ Error: Video generation failed" | |
except Exception as e: | |
error_msg = f"❌ Error in video generation: {str(e)}" | |
print(error_msg) | |
return None, error_msg | |
def create_gradio_interface(wangp_interface): | |
"""Create Gradio interface with error handling""" | |
try: | |
with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo: | |
gr.HTML(""" | |
<div style="text-align: center; margin-bottom: 20px;"> | |
<h1>🎭 WanGP v6.3 - Hunyuan Video Avatar</h1> | |
<p>Advanced AI Video Generation with Audio-Driven Human Animation</p> | |
<p style="color: orange;">⚠️ Running in Demo Mode - Using placeholder outputs</p> | |
</div> | |
""") | |
with gr.Tabs(): | |
# Avatar Generation Tab | |
with gr.TabItem("🎭 Avatar Generation"): | |
with gr.Row(): | |
with gr.Column(): | |
audio_input = gr.Audio( | |
label="Audio Input", | |
type="filepath" | |
) | |
avatar_image = gr.Image( | |
label="Avatar Image", | |
type="filepath" | |
) | |
emotion_control = gr.Dropdown( | |
choices=["neutral", "happy", "sad", "angry", "surprised"], | |
value="neutral", | |
label="Emotion Control" | |
) | |
avatar_prompt = gr.Textbox( | |
label="Additional Prompt (Optional)", | |
placeholder="Describe additional details...", | |
value="" | |
) | |
generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary") | |
with gr.Column(): | |
avatar_output = gr.Video(label="Generated Avatar Video") | |
avatar_status = gr.Textbox(label="Status", interactive=False, value="Ready") | |
# Text-to-Video Tab | |
with gr.TabItem("📹 Text to Video"): | |
with gr.Row(): | |
with gr.Column(): | |
video_prompt = gr.Textbox( | |
label="Video Prompt", | |
placeholder="Describe the video you want to generate...", | |
lines=3, | |
value="" | |
) | |
duration_slider = gr.Slider( | |
minimum=2, | |
maximum=10, | |
value=5, | |
step=1, | |
label="Duration (seconds)" | |
) | |
resolution_dropdown = gr.Dropdown( | |
choices=["512x512", "768x768", "1024x1024"], | |
value="512x512", | |
label="Resolution" | |
) | |
generate_video_btn = gr.Button("Generate Video", variant="primary") | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video") | |
video_status = gr.Textbox(label="Status", interactive=False, value="Ready") | |
# Event handlers with error handling | |
def safe_avatar_generation(*args): | |
try: | |
return wangp_interface.generate_avatar_video(*args) | |
except Exception as e: | |
return None, f"❌ Unexpected error: {str(e)}" | |
def safe_video_generation(*args): | |
try: | |
result = wangp_interface.generate_video(*args) | |
if isinstance(result, tuple): | |
return result | |
else: | |
return None, result | |
except Exception as e: | |
return None, f"❌ Unexpected error: {str(e)}" | |
generate_avatar_btn.click( | |
fn=safe_avatar_generation, | |
inputs=[audio_input, avatar_image, avatar_prompt, emotion_control], | |
outputs=[avatar_output, avatar_status] | |
) | |
generate_video_btn.click( | |
fn=safe_video_generation, | |
inputs=[video_prompt, duration_slider, resolution_dropdown], | |
outputs=[video_output, video_status] | |
) | |
gr.HTML(""" | |
<div style="text-align: center; margin-top: 20px; color: #666;"> | |
<p>Powered by Hunyuan Video Avatar & WanGP v6.3</p> | |
<p style="font-size: 12px;">Note: This is a demonstration interface with placeholder outputs</p> | |
</div> | |
""") | |
return demo | |
except Exception as e: | |
print(f"Error creating Gradio interface: {e}") | |
# Return minimal interface | |
demo = gr.Interface( | |
fn=lambda x: f"Error: {str(e)}", | |
inputs="text", | |
outputs="text", | |
title="WanGP v6.3 - Error State" | |
) | |
return demo | |
def main(): | |
"""Main function with comprehensive error handling""" | |
print("🚀 Starting WanGP v6.3 with Hunyuan Video Avatar...") | |
try: | |
# Setup environment | |
setup_environment() | |
except Exception as e: | |
print(f"Environment setup warning: {e}") | |
try: | |
# Create configuration | |
config = create_hf_config() | |
except Exception as e: | |
print(f"Config creation warning: {e}") | |
config = {} | |
try: | |
# Download models in background | |
download_essential_models() | |
except Exception as e: | |
print(f"Model download skipped: {e}") | |
try: | |
# Initialize WanGP interface | |
wangp_interface = WanGPInterface(config) | |
except Exception as e: | |
print(f"Interface initialization error: {e}") | |
# Create minimal interface | |
class MinimalInterface: | |
def __init__(self): | |
self.config = {} | |
def generate_avatar_video(self, *args): | |
return None, "Service temporarily unavailable" | |
def generate_video(self, *args): | |
return None, "Service temporarily unavailable" | |
wangp_interface = MinimalInterface() | |
try: | |
# Create and launch Gradio interface | |
demo = create_gradio_interface(wangp_interface) | |
print("✅ Setup complete! Launching application...") | |
# Launch with error handling | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)), | |
share=False, | |
debug=False, | |
show_error=True, | |
prevent_thread_lock=False | |
) | |
except Exception as e: | |
print(f"❌ Failed to launch Gradio: {e}") | |
print("Attempting fallback launch...") | |
try: | |
# Minimal fallback | |
import gradio as gr | |
gr.Interface( | |
fn=lambda x: "System Error - Please restart", | |
inputs="text", | |
outputs="text" | |
).launch() | |
except: | |
print("❌ Complete failure. Exiting.") | |
sys.exit(1) | |
if __name__ == "__main__": | |
main() |