Spaces:
Running
Running
from typing import Any, List, Tuple, Optional, Union, Dict | |
from einops import rearrange | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.models import ModelMixin | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from .activation_layers import get_activation_layer | |
from .norm_layers import get_norm_layer | |
from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection | |
from .attenion import attention, parallel_attention, get_cu_seqlens | |
from .posemb_layers import apply_rotary_emb | |
from .mlp_layers import MLP, MLPEmbedder, FinalLayer | |
from .modulate_layers import ModulateDiT, modulate, modulate_ , apply_gate, apply_gate_and_accumulate_ | |
from .token_refiner import SingleTokenRefiner | |
import numpy as np | |
from mmgp import offload | |
from wan.modules.attention import pay_attention | |
from .audio_adapters import AudioProjNet2, PerceiverAttentionCA | |
def get_linear_split_map(): | |
hidden_size = 3072 | |
split_linear_modules_map = { | |
"img_attn_qkv" : {"mapped_modules" : ["img_attn_q", "img_attn_k", "img_attn_v"] , "split_sizes": [hidden_size, hidden_size, hidden_size]}, | |
"linear1" : {"mapped_modules" : ["linear1_attn_q", "linear1_attn_k", "linear1_attn_v", "linear1_mlp"] , "split_sizes": [hidden_size, hidden_size, hidden_size, 7*hidden_size- 3*hidden_size]} | |
} | |
return split_linear_modules_map | |
try: | |
from xformers.ops.fmha.attn_bias import BlockDiagonalPaddedKeysMask | |
except ImportError: | |
BlockDiagonalPaddedKeysMask = None | |
class MMDoubleStreamBlock(nn.Module): | |
""" | |
A multimodal dit block with seperate modulation for | |
text and image/video, see more details (SD3): https://arxiv.org/abs/2403.03206 | |
(Flux.1): https://github.com/black-forest-labs/flux | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
heads_num: int, | |
mlp_width_ratio: float, | |
mlp_act_type: str = "gelu_tanh", | |
qk_norm: bool = True, | |
qk_norm_type: str = "rms", | |
qkv_bias: bool = False, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
attention_mode: str = "sdpa", | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.attention_mode = attention_mode | |
self.deterministic = False | |
self.heads_num = heads_num | |
head_dim = hidden_size // heads_num | |
mlp_hidden_dim = int(hidden_size * mlp_width_ratio) | |
self.img_mod = ModulateDiT( | |
hidden_size, | |
factor=6, | |
act_layer=get_activation_layer("silu"), | |
**factory_kwargs, | |
) | |
self.img_norm1 = nn.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
) | |
self.img_attn_qkv = nn.Linear( | |
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs | |
) | |
qk_norm_layer = get_norm_layer(qk_norm_type) | |
self.img_attn_q_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.img_attn_k_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.img_attn_proj = nn.Linear( | |
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs | |
) | |
self.img_norm2 = nn.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
) | |
self.img_mlp = MLP( | |
hidden_size, | |
mlp_hidden_dim, | |
act_layer=get_activation_layer(mlp_act_type), | |
bias=True, | |
**factory_kwargs, | |
) | |
self.txt_mod = ModulateDiT( | |
hidden_size, | |
factor=6, | |
act_layer=get_activation_layer("silu"), | |
**factory_kwargs, | |
) | |
self.txt_norm1 = nn.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
) | |
self.txt_attn_qkv = nn.Linear( | |
hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs | |
) | |
self.txt_attn_q_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.txt_attn_k_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.txt_attn_proj = nn.Linear( | |
hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs | |
) | |
self.txt_norm2 = nn.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
) | |
self.txt_mlp = MLP( | |
hidden_size, | |
mlp_hidden_dim, | |
act_layer=get_activation_layer(mlp_act_type), | |
bias=True, | |
**factory_kwargs, | |
) | |
self.hybrid_seq_parallel_attn = None | |
def enable_deterministic(self): | |
self.deterministic = True | |
def disable_deterministic(self): | |
self.deterministic = False | |
def forward( | |
self, | |
img: torch.Tensor, | |
txt: torch.Tensor, | |
vec: torch.Tensor, | |
attn_mask = None, | |
seqlens_q: Optional[torch.Tensor] = None, | |
seqlens_kv: Optional[torch.Tensor] = None, | |
freqs_cis: tuple = None, | |
condition_type: str = None, | |
token_replace_vec: torch.Tensor = None, | |
frist_frame_token_num: int = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
if condition_type == "token_replace": | |
img_mod1, token_replace_img_mod1 = self.img_mod(vec, condition_type=condition_type, \ | |
token_replace_vec=token_replace_vec) | |
(img_mod1_shift, | |
img_mod1_scale, | |
img_mod1_gate, | |
img_mod2_shift, | |
img_mod2_scale, | |
img_mod2_gate) = img_mod1.chunk(6, dim=-1) | |
(tr_img_mod1_shift, | |
tr_img_mod1_scale, | |
tr_img_mod1_gate, | |
tr_img_mod2_shift, | |
tr_img_mod2_scale, | |
tr_img_mod2_gate) = token_replace_img_mod1.chunk(6, dim=-1) | |
else: | |
( | |
img_mod1_shift, | |
img_mod1_scale, | |
img_mod1_gate, | |
img_mod2_shift, | |
img_mod2_scale, | |
img_mod2_gate, | |
) = self.img_mod(vec).chunk(6, dim=-1) | |
( | |
txt_mod1_shift, | |
txt_mod1_scale, | |
txt_mod1_gate, | |
txt_mod2_shift, | |
txt_mod2_scale, | |
txt_mod2_gate, | |
) = self.txt_mod(vec).chunk(6, dim=-1) | |
##### Enjoy this spagheti VRAM optimizations done by DeepBeepMeep ! | |
# I am sure you are a nice person and as you copy this code, you will give me officially proper credits: | |
# Please link to https://github.com/deepbeepmeep/HunyuanVideoGP and @deepbeepmeep on twitter | |
# Prepare image for attention. | |
img_modulated = self.img_norm1(img) | |
img_modulated = img_modulated.to(torch.bfloat16) | |
if condition_type == "token_replace": | |
modulate_(img_modulated[:, :frist_frame_token_num], shift=tr_img_mod1_shift, scale=tr_img_mod1_scale) | |
modulate_(img_modulated[:, frist_frame_token_num:], shift=img_mod1_shift, scale=img_mod1_scale) | |
else: | |
modulate_( img_modulated, shift=img_mod1_shift, scale=img_mod1_scale ) | |
shape = (*img_modulated.shape[:2], self.heads_num, int(img_modulated.shape[-1] / self.heads_num) ) | |
img_q = self.img_attn_q(img_modulated).view(*shape) | |
img_k = self.img_attn_k(img_modulated).view(*shape) | |
img_v = self.img_attn_v(img_modulated).view(*shape) | |
del img_modulated | |
# Apply QK-Norm if needed | |
self.img_attn_q_norm.apply_(img_q).to(img_v) | |
img_q_len = img_q.shape[1] | |
self.img_attn_k_norm.apply_(img_k).to(img_v) | |
img_kv_len= img_k.shape[1] | |
batch_size = img_k.shape[0] | |
# Apply RoPE if needed. | |
qklist = [img_q, img_k] | |
del img_q, img_k | |
img_q, img_k = apply_rotary_emb(qklist, freqs_cis, head_first=False) | |
# Prepare txt for attention. | |
txt_modulated = self.txt_norm1(txt) | |
modulate_(txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale ) | |
txt_qkv = self.txt_attn_qkv(txt_modulated) | |
del txt_modulated | |
txt_q, txt_k, txt_v = rearrange( | |
txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num | |
) | |
del txt_qkv | |
# Apply QK-Norm if needed. | |
self.txt_attn_q_norm.apply_(txt_q).to(txt_v) | |
self.txt_attn_k_norm.apply_(txt_k).to(txt_v) | |
# Run actual attention. | |
q = torch.cat((img_q, txt_q), dim=1) | |
del img_q, txt_q | |
k = torch.cat((img_k, txt_k), dim=1) | |
del img_k, txt_k | |
v = torch.cat((img_v, txt_v), dim=1) | |
del img_v, txt_v | |
# attention computation start | |
qkv_list = [q,k,v] | |
del q, k, v | |
attn = pay_attention( | |
qkv_list, | |
attention_mask=attn_mask, | |
q_lens=seqlens_q, | |
k_lens=seqlens_kv, | |
) | |
b, s, a, d = attn.shape | |
attn = attn.reshape(b, s, -1) | |
del qkv_list | |
# attention computation end | |
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1] :] | |
del attn | |
# Calculate the img bloks. | |
if condition_type == "token_replace": | |
img_attn = self.img_attn_proj(img_attn) | |
apply_gate_and_accumulate_(img[:, :frist_frame_token_num], img_attn[:, :frist_frame_token_num], gate=tr_img_mod1_gate) | |
apply_gate_and_accumulate_(img[:, frist_frame_token_num:], img_attn[:, frist_frame_token_num:], gate=img_mod1_gate) | |
del img_attn | |
img_modulated = self.img_norm2(img) | |
img_modulated = img_modulated.to(torch.bfloat16) | |
modulate_( img_modulated[:, :frist_frame_token_num], shift=tr_img_mod2_shift, scale=tr_img_mod2_scale) | |
modulate_( img_modulated[:, frist_frame_token_num:], shift=img_mod2_shift, scale=img_mod2_scale) | |
self.img_mlp.apply_(img_modulated) | |
apply_gate_and_accumulate_(img[:, :frist_frame_token_num], img_modulated[:, :frist_frame_token_num], gate=tr_img_mod2_gate) | |
apply_gate_and_accumulate_(img[:, frist_frame_token_num:], img_modulated[:, frist_frame_token_num:], gate=img_mod2_gate) | |
del img_modulated | |
else: | |
img_attn = self.img_attn_proj(img_attn) | |
apply_gate_and_accumulate_(img, img_attn, gate=img_mod1_gate) | |
del img_attn | |
img_modulated = self.img_norm2(img) | |
img_modulated = img_modulated.to(torch.bfloat16) | |
modulate_( img_modulated , shift=img_mod2_shift, scale=img_mod2_scale) | |
self.img_mlp.apply_(img_modulated) | |
apply_gate_and_accumulate_(img, img_modulated, gate=img_mod2_gate) | |
del img_modulated | |
# Calculate the txt bloks. | |
txt_attn = self.txt_attn_proj(txt_attn) | |
apply_gate_and_accumulate_(txt, txt_attn, gate=txt_mod1_gate) | |
del txt_attn | |
txt_modulated = self.txt_norm2(txt) | |
txt_modulated = txt_modulated.to(torch.bfloat16) | |
modulate_(txt_modulated, shift=txt_mod2_shift, scale=txt_mod2_scale) | |
txt_mlp = self.txt_mlp(txt_modulated) | |
del txt_modulated | |
apply_gate_and_accumulate_(txt, txt_mlp, gate=txt_mod2_gate) | |
return img, txt | |
class MMSingleStreamBlock(nn.Module): | |
""" | |
A DiT block with parallel linear layers as described in | |
https://arxiv.org/abs/2302.05442 and adapted modulation interface. | |
Also refer to (SD3): https://arxiv.org/abs/2403.03206 | |
(Flux.1): https://github.com/black-forest-labs/flux | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
heads_num: int, | |
mlp_width_ratio: float = 4.0, | |
mlp_act_type: str = "gelu_tanh", | |
qk_norm: bool = True, | |
qk_norm_type: str = "rms", | |
qk_scale: float = None, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
attention_mode: str = "sdpa", | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.attention_mode = attention_mode | |
self.deterministic = False | |
self.hidden_size = hidden_size | |
self.heads_num = heads_num | |
head_dim = hidden_size // heads_num | |
mlp_hidden_dim = int(hidden_size * mlp_width_ratio) | |
self.mlp_hidden_dim = mlp_hidden_dim | |
self.scale = qk_scale or head_dim ** -0.5 | |
# qkv and mlp_in | |
self.linear1 = nn.Linear( | |
hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs | |
) | |
# proj and mlp_out | |
self.linear2 = nn.Linear( | |
hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs | |
) | |
qk_norm_layer = get_norm_layer(qk_norm_type) | |
self.q_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.k_norm = ( | |
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) | |
if qk_norm | |
else nn.Identity() | |
) | |
self.pre_norm = nn.LayerNorm( | |
hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs | |
) | |
self.mlp_act = get_activation_layer(mlp_act_type)() | |
self.modulation = ModulateDiT( | |
hidden_size, | |
factor=3, | |
act_layer=get_activation_layer("silu"), | |
**factory_kwargs, | |
) | |
self.hybrid_seq_parallel_attn = None | |
def enable_deterministic(self): | |
self.deterministic = True | |
def disable_deterministic(self): | |
self.deterministic = False | |
def forward( | |
self, | |
# x: torch.Tensor, | |
img: torch.Tensor, | |
txt: torch.Tensor, | |
vec: torch.Tensor, | |
txt_len: int, | |
attn_mask= None, | |
seqlens_q: Optional[torch.Tensor] = None, | |
seqlens_kv: Optional[torch.Tensor] = None, | |
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None, | |
condition_type: str = None, | |
token_replace_vec: torch.Tensor = None, | |
frist_frame_token_num: int = None, | |
) -> torch.Tensor: | |
##### More spagheti VRAM optimizations done by DeepBeepMeep ! | |
# I am sure you are a nice person and as you copy this code, you will give me proper credits: | |
# Please link to https://github.com/deepbeepmeep/HunyuanVideoGP and @deepbeepmeep on twitter | |
if condition_type == "token_replace": | |
mod, tr_mod = self.modulation(vec, | |
condition_type=condition_type, | |
token_replace_vec=token_replace_vec) | |
(mod_shift, | |
mod_scale, | |
mod_gate) = mod.chunk(3, dim=-1) | |
(tr_mod_shift, | |
tr_mod_scale, | |
tr_mod_gate) = tr_mod.chunk(3, dim=-1) | |
else: | |
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1) | |
img_mod = self.pre_norm(img) | |
img_mod = img_mod.to(torch.bfloat16) | |
if condition_type == "token_replace": | |
modulate_(img_mod[:, :frist_frame_token_num], shift=tr_mod_shift, scale=tr_mod_scale) | |
modulate_(img_mod[:, frist_frame_token_num:], shift=mod_shift, scale=mod_scale) | |
else: | |
modulate_(img_mod, shift=mod_shift, scale=mod_scale) | |
txt_mod = self.pre_norm(txt) | |
txt_mod = txt_mod.to(torch.bfloat16) | |
modulate_(txt_mod, shift=mod_shift, scale=mod_scale) | |
shape = (*img_mod.shape[:2], self.heads_num, int(img_mod.shape[-1] / self.heads_num) ) | |
img_q = self.linear1_attn_q(img_mod).view(*shape) | |
img_k = self.linear1_attn_k(img_mod).view(*shape) | |
img_v = self.linear1_attn_v(img_mod).view(*shape) | |
shape = (*txt_mod.shape[:2], self.heads_num, int(txt_mod.shape[-1] / self.heads_num) ) | |
txt_q = self.linear1_attn_q(txt_mod).view(*shape) | |
txt_k = self.linear1_attn_k(txt_mod).view(*shape) | |
txt_v = self.linear1_attn_v(txt_mod).view(*shape) | |
batch_size = img_mod.shape[0] | |
# Apply QK-Norm if needed. | |
# q = self.q_norm(q).to(v) | |
self.q_norm.apply_(img_q) | |
self.k_norm.apply_(img_k) | |
self.q_norm.apply_(txt_q) | |
self.k_norm.apply_(txt_k) | |
qklist = [img_q, img_k] | |
del img_q, img_k | |
img_q, img_k = apply_rotary_emb(qklist, freqs_cis, head_first=False) | |
img_q_len=img_q.shape[1] | |
q = torch.cat((img_q, txt_q), dim=1) | |
del img_q, txt_q | |
k = torch.cat((img_k, txt_k), dim=1) | |
img_kv_len=img_k.shape[1] | |
del img_k, txt_k | |
v = torch.cat((img_v, txt_v), dim=1) | |
del img_v, txt_v | |
# attention computation start | |
qkv_list = [q,k,v] | |
del q, k, v | |
attn = pay_attention( | |
qkv_list, | |
attention_mask=attn_mask, | |
q_lens = seqlens_q, | |
k_lens = seqlens_kv, | |
) | |
b, s, a, d = attn.shape | |
attn = attn.reshape(b, s, -1) | |
del qkv_list | |
# attention computation end | |
x_mod = torch.cat((img_mod, txt_mod), 1) | |
del img_mod, txt_mod | |
x_mod_shape = x_mod.shape | |
x_mod = x_mod.view(-1, x_mod.shape[-1]) | |
chunk_size = int(x_mod_shape[1]/6) | |
x_chunks = torch.split(x_mod, chunk_size) | |
attn = attn.view(-1, attn.shape[-1]) | |
attn_chunks =torch.split(attn, chunk_size) | |
for x_chunk, attn_chunk in zip(x_chunks, attn_chunks): | |
mlp_chunk = self.linear1_mlp(x_chunk) | |
mlp_chunk = self.mlp_act(mlp_chunk) | |
attn_mlp_chunk = torch.cat((attn_chunk, mlp_chunk), -1) | |
del attn_chunk, mlp_chunk | |
x_chunk[...] = self.linear2(attn_mlp_chunk) | |
del attn_mlp_chunk | |
x_mod = x_mod.view(x_mod_shape) | |
if condition_type == "token_replace": | |
apply_gate_and_accumulate_(img[:, :frist_frame_token_num, :], x_mod[:, :frist_frame_token_num, :], gate=tr_mod_gate) | |
apply_gate_and_accumulate_(img[:, frist_frame_token_num:, :], x_mod[:, frist_frame_token_num:-txt_len, :], gate=mod_gate) | |
else: | |
apply_gate_and_accumulate_(img, x_mod[:, :-txt_len, :], gate=mod_gate) | |
apply_gate_and_accumulate_(txt, x_mod[:, -txt_len:, :], gate=mod_gate) | |
return img, txt | |
class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin): | |
def preprocess_loras(self, model_type, sd): | |
if model_type != "i2v" : | |
return sd | |
new_sd = {} | |
for k,v in sd.items(): | |
repl_list = ["double_blocks", "single_blocks", "final_layer", "img_mlp", "img_attn_qkv", "img_attn_proj","img_mod", "txt_mlp", "txt_attn_qkv","txt_attn_proj", "txt_mod", "linear1", | |
"linear2", "modulation", "mlp_fc1"] | |
src_list = [k +"_" for k in repl_list] + ["_" + k for k in repl_list] | |
tgt_list = [k +"." for k in repl_list] + ["." + k for k in repl_list] | |
if k.startswith("Hunyuan_video_I2V_lora_"): | |
# crappy conversion script for non reversible lora naming | |
k = k.replace("Hunyuan_video_I2V_lora_","diffusion_model.") | |
k = k.replace("lora_up","lora_B") | |
k = k.replace("lora_down","lora_A") | |
if "txt_in_individual" in k: | |
pass | |
for s,t in zip(src_list, tgt_list): | |
k = k.replace(s,t) | |
if "individual_token_refiner" in k: | |
k = k.replace("txt_in_individual_token_refiner_blocks_", "txt_in.individual_token_refiner.blocks.") | |
k = k.replace("_mlp_fc", ".mlp.fc",) | |
k = k.replace(".mlp_fc", ".mlp.fc",) | |
new_sd[k] = v | |
return new_sd | |
""" | |
HunyuanVideo Transformer backbone | |
Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline. | |
Reference: | |
[1] Flux.1: https://github.com/black-forest-labs/flux | |
[2] MMDiT: http://arxiv.org/abs/2403.03206 | |
Parameters | |
---------- | |
args: argparse.Namespace | |
The arguments parsed by argparse. | |
patch_size: list | |
The size of the patch. | |
in_channels: int | |
The number of input channels. | |
out_channels: int | |
The number of output channels. | |
hidden_size: int | |
The hidden size of the transformer backbone. | |
heads_num: int | |
The number of attention heads. | |
mlp_width_ratio: float | |
The ratio of the hidden size of the MLP in the transformer block. | |
mlp_act_type: str | |
The activation function of the MLP in the transformer block. | |
depth_double_blocks: int | |
The number of transformer blocks in the double blocks. | |
depth_single_blocks: int | |
The number of transformer blocks in the single blocks. | |
rope_dim_list: list | |
The dimension of the rotary embedding for t, h, w. | |
qkv_bias: bool | |
Whether to use bias in the qkv linear layer. | |
qk_norm: bool | |
Whether to use qk norm. | |
qk_norm_type: str | |
The type of qk norm. | |
guidance_embed: bool | |
Whether to use guidance embedding for distillation. | |
text_projection: str | |
The type of the text projection, default is single_refiner. | |
use_attention_mask: bool | |
Whether to use attention mask for text encoder. | |
dtype: torch.dtype | |
The dtype of the model. | |
device: torch.device | |
The device of the model. | |
""" | |
def __init__( | |
self, | |
i2v_condition_type, | |
patch_size: list = [1, 2, 2], | |
in_channels: int = 4, # Should be VAE.config.latent_channels. | |
out_channels: int = None, | |
hidden_size: int = 3072, | |
heads_num: int = 24, | |
mlp_width_ratio: float = 4.0, | |
mlp_act_type: str = "gelu_tanh", | |
mm_double_blocks_depth: int = 20, | |
mm_single_blocks_depth: int = 40, | |
rope_dim_list: List[int] = [16, 56, 56], | |
qkv_bias: bool = True, | |
qk_norm: bool = True, | |
qk_norm_type: str = "rms", | |
guidance_embed: bool = False, # For modulation. | |
text_projection: str = "single_refiner", | |
use_attention_mask: bool = True, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
attention_mode: Optional[str] = "sdpa", | |
video_condition: bool = False, | |
audio_condition: bool = False, | |
avatar = False, | |
custom = False, | |
): | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
# mm_double_blocks_depth , mm_single_blocks_depth = 5, 5 | |
self.patch_size = patch_size | |
self.in_channels = in_channels | |
self.out_channels = in_channels if out_channels is None else out_channels | |
self.unpatchify_channels = self.out_channels | |
self.guidance_embed = guidance_embed | |
self.rope_dim_list = rope_dim_list | |
self.i2v_condition_type = i2v_condition_type | |
self.attention_mode = attention_mode | |
self.video_condition = video_condition | |
self.audio_condition = audio_condition | |
self.avatar = avatar | |
self.custom = custom | |
# Text projection. Default to linear projection. | |
# Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831 | |
self.use_attention_mask = use_attention_mask | |
self.text_projection = text_projection | |
self.text_states_dim = 4096 | |
self.text_states_dim_2 = 768 | |
if hidden_size % heads_num != 0: | |
raise ValueError( | |
f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}" | |
) | |
pe_dim = hidden_size // heads_num | |
if sum(rope_dim_list) != pe_dim: | |
raise ValueError( | |
f"Got {rope_dim_list} but expected positional dim {pe_dim}" | |
) | |
self.hidden_size = hidden_size | |
self.heads_num = heads_num | |
# image projection | |
self.img_in = PatchEmbed( | |
self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs | |
) | |
# text projection | |
if self.text_projection == "linear": | |
self.txt_in = TextProjection( | |
self.text_states_dim, | |
self.hidden_size, | |
get_activation_layer("silu"), | |
**factory_kwargs, | |
) | |
elif self.text_projection == "single_refiner": | |
self.txt_in = SingleTokenRefiner( | |
self.text_states_dim, hidden_size, heads_num, depth=2, **factory_kwargs | |
) | |
else: | |
raise NotImplementedError( | |
f"Unsupported text_projection: {self.text_projection}" | |
) | |
# time modulation | |
self.time_in = TimestepEmbedder( | |
self.hidden_size, get_activation_layer("silu"), **factory_kwargs | |
) | |
# text modulation | |
self.vector_in = MLPEmbedder( | |
self.text_states_dim_2, self.hidden_size, **factory_kwargs | |
) | |
# guidance modulation | |
self.guidance_in = ( | |
TimestepEmbedder( | |
self.hidden_size, get_activation_layer("silu"), **factory_kwargs | |
) | |
if guidance_embed | |
else None | |
) | |
# double blocks | |
self.double_blocks = nn.ModuleList( | |
[ | |
MMDoubleStreamBlock( | |
self.hidden_size, | |
self.heads_num, | |
mlp_width_ratio=mlp_width_ratio, | |
mlp_act_type=mlp_act_type, | |
qk_norm=qk_norm, | |
qk_norm_type=qk_norm_type, | |
qkv_bias=qkv_bias, | |
attention_mode = attention_mode, | |
**factory_kwargs, | |
) | |
for _ in range(mm_double_blocks_depth) | |
] | |
) | |
# single blocks | |
self.single_blocks = nn.ModuleList( | |
[ | |
MMSingleStreamBlock( | |
self.hidden_size, | |
self.heads_num, | |
mlp_width_ratio=mlp_width_ratio, | |
mlp_act_type=mlp_act_type, | |
qk_norm=qk_norm, | |
qk_norm_type=qk_norm_type, | |
attention_mode = attention_mode, | |
**factory_kwargs, | |
) | |
for _ in range(mm_single_blocks_depth) | |
] | |
) | |
self.final_layer = FinalLayer( | |
self.hidden_size, | |
self.patch_size, | |
self.out_channels, | |
get_activation_layer("silu"), | |
**factory_kwargs, | |
) | |
if self.video_condition: | |
self.bg_in = PatchEmbed( | |
self.patch_size, self.in_channels * 2, self.hidden_size, **factory_kwargs | |
) | |
self.bg_proj = nn.Linear(self.hidden_size, self.hidden_size) | |
if audio_condition: | |
if avatar: | |
self.ref_in = PatchEmbed( | |
self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs | |
) | |
# -------------------- audio_proj_model -------------------- | |
self.audio_proj = AudioProjNet2(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=3072, context_tokens=4) | |
# -------------------- motion-embeder -------------------- | |
self.motion_exp = TimestepEmbedder( | |
self.hidden_size // 4, | |
get_activation_layer("silu"), | |
**factory_kwargs | |
) | |
self.motion_pose = TimestepEmbedder( | |
self.hidden_size // 4, | |
get_activation_layer("silu"), | |
**factory_kwargs | |
) | |
self.fps_proj = TimestepEmbedder( | |
self.hidden_size, | |
get_activation_layer("silu"), | |
**factory_kwargs | |
) | |
self.before_proj = nn.Linear(self.hidden_size, self.hidden_size) | |
# -------------------- audio_insert_model -------------------- | |
self.double_stream_list = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] | |
audio_block_name = "audio_adapter_blocks" | |
elif custom: | |
self.audio_proj = AudioProjNet2(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=3072, context_tokens=4) | |
self.double_stream_list = [1, 3, 5, 7, 9, 11] | |
audio_block_name = "audio_models" | |
self.double_stream_map = {str(i): j for j, i in enumerate(self.double_stream_list)} | |
self.single_stream_list = [] | |
self.single_stream_map = {str(i): j+len(self.double_stream_list) for j, i in enumerate(self.single_stream_list)} | |
setattr(self, audio_block_name, nn.ModuleList([ | |
PerceiverAttentionCA(dim=3072, dim_head=1024, heads=33) for _ in range(len(self.double_stream_list) + len(self.single_stream_list)) | |
])) | |
def lock_layers_dtypes(self, dtype = torch.float32): | |
layer_list = [self.final_layer, self.final_layer.linear, self.final_layer.adaLN_modulation[1]] | |
target_dype= dtype | |
for current_layer_list, current_dtype in zip([layer_list], [target_dype]): | |
for layer in current_layer_list: | |
layer._lock_dtype = dtype | |
if hasattr(layer, "weight") and layer.weight.dtype != current_dtype : | |
layer.weight.data = layer.weight.data.to(current_dtype) | |
if hasattr(layer, "bias"): | |
layer.bias.data = layer.bias.data.to(current_dtype) | |
self._lock_dtype = dtype | |
def enable_deterministic(self): | |
for block in self.double_blocks: | |
block.enable_deterministic() | |
for block in self.single_blocks: | |
block.enable_deterministic() | |
def disable_deterministic(self): | |
for block in self.double_blocks: | |
block.disable_deterministic() | |
for block in self.single_blocks: | |
block.disable_deterministic() | |
def forward( | |
self, | |
x: torch.Tensor, | |
t: torch.Tensor, # Should be in range(0, 1000). | |
ref_latents: torch.Tensor=None, | |
text_states: torch.Tensor = None, | |
text_mask: torch.Tensor = None, # Now we don't use it. | |
text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation. | |
freqs_cos: Optional[torch.Tensor] = None, | |
freqs_sin: Optional[torch.Tensor] = None, | |
guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000. | |
pipeline=None, | |
x_id = 0, | |
step_no = 0, | |
callback = None, | |
audio_prompts = None, | |
motion_exp = None, | |
motion_pose = None, | |
fps = None, | |
face_mask = None, | |
audio_strength = None, | |
bg_latents = None, | |
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: | |
img = x | |
bsz, _, ot, oh, ow = x.shape | |
del x | |
txt = text_states | |
tt, th, tw = ( | |
ot // self.patch_size[0], | |
oh // self.patch_size[1], | |
ow // self.patch_size[2], | |
) | |
# Prepare modulation vectors. | |
vec = self.time_in(t) | |
if motion_exp != None: | |
vec += self.motion_exp(motion_exp.view(-1)).view(bsz, -1) # (b, 3072) | |
if motion_pose != None: | |
vec += self.motion_pose(motion_pose.view(-1)).view(bsz, -1) # (b, 3072) | |
if fps != None: | |
vec += self.fps_proj(fps) # (b, 3072) | |
if audio_prompts != None: | |
audio_feature_all = self.audio_proj(audio_prompts) | |
audio_feature_pad = audio_feature_all[:,:1].repeat(1,3,1,1) | |
audio_feature_all_insert = torch.cat([audio_feature_pad, audio_feature_all], dim=1).view(bsz, ot, 16, 3072) | |
audio_feature_all = None | |
if self.i2v_condition_type == "token_replace": | |
token_replace_t = torch.zeros_like(t) | |
token_replace_vec = self.time_in(token_replace_t) | |
frist_frame_token_num = th * tw | |
else: | |
token_replace_vec = None | |
frist_frame_token_num = None | |
# token_replace_mask_img = None | |
# token_replace_mask_txt = None | |
# text modulation | |
vec_2 = self.vector_in(text_states_2) | |
del text_states_2 | |
vec += vec_2 | |
if self.i2v_condition_type == "token_replace": | |
token_replace_vec += vec_2 | |
del vec_2 | |
# guidance modulation | |
if self.guidance_embed: | |
if guidance is None: | |
raise ValueError( | |
"Didn't get guidance strength for guidance distilled model." | |
) | |
# our timestep_embedding is merged into guidance_in(TimestepEmbedder) | |
vec += self.guidance_in(guidance) | |
# Embed image and text. | |
img, shape_mask = self.img_in(img) | |
if self.avatar: | |
ref_latents_first = ref_latents[:, :, :1].clone() | |
ref_latents,_ = self.ref_in(ref_latents) | |
ref_latents_first,_ = self.img_in(ref_latents_first) | |
elif self.custom: | |
if ref_latents != None: | |
ref_latents, _ = self.img_in(ref_latents) | |
if bg_latents is not None and self.video_condition: | |
bg_latents, _ = self.bg_in(bg_latents) | |
img += self.bg_proj(bg_latents) | |
if self.text_projection == "linear": | |
txt = self.txt_in(txt) | |
elif self.text_projection == "single_refiner": | |
txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None) | |
else: | |
raise NotImplementedError( | |
f"Unsupported text_projection: {self.text_projection}" | |
) | |
if self.avatar: | |
img += self.before_proj(ref_latents) | |
ref_length = ref_latents_first.shape[-2] # [b s c] | |
img = torch.cat([ref_latents_first, img], dim=-2) # t c | |
img_len = img.shape[1] | |
mask_len = img_len - ref_length | |
if face_mask.shape[2] == 1: | |
face_mask = face_mask.repeat(1,1,ot,1,1) # repeat if number of mask frame is 1 | |
face_mask = torch.nn.functional.interpolate(face_mask, size=[ot, shape_mask[-2], shape_mask[-1]], mode="nearest") | |
# face_mask = face_mask.view(-1,mask_len,1).repeat(1,1,img.shape[-1]).type_as(img) | |
face_mask = face_mask.view(-1,mask_len,1).type_as(img) | |
elif ref_latents == None: | |
ref_length = None | |
else: | |
ref_length = ref_latents.shape[-2] | |
img = torch.cat([ref_latents, img], dim=-2) # t c | |
txt_seq_len = txt.shape[1] | |
img_seq_len = img.shape[1] | |
text_len = text_mask.sum(1) | |
total_len = text_len + img_seq_len | |
seqlens_q = seqlens_kv = total_len | |
attn_mask = None | |
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None | |
if self.enable_cache: | |
if x_id == 0: | |
self.should_calc = True | |
inp = img[0:1] | |
vec_ = vec[0:1] | |
( img_mod1_shift, img_mod1_scale, _ , _ , _ , _ , ) = self.double_blocks[0].img_mod(vec_).chunk(6, dim=-1) | |
normed_inp = self.double_blocks[0].img_norm1(inp) | |
normed_inp = normed_inp.to(torch.bfloat16) | |
modulated_inp = modulate( normed_inp, shift=img_mod1_shift, scale=img_mod1_scale ) | |
del normed_inp, img_mod1_shift, img_mod1_scale | |
if step_no <= self.cache_start_step or step_no == self.num_steps-1: | |
self.accumulated_rel_l1_distance = 0 | |
else: | |
coefficients = [7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02] | |
rescale_func = np.poly1d(coefficients) | |
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) | |
if self.accumulated_rel_l1_distance < self.rel_l1_thresh: | |
self.should_calc = False | |
self.teacache_skipped_steps += 1 | |
else: | |
self.accumulated_rel_l1_distance = 0 | |
self.previous_modulated_input = modulated_inp | |
else: | |
self.should_calc = True | |
if not self.should_calc: | |
img += self.previous_residual[x_id] | |
else: | |
if self.enable_cache: | |
self.previous_residual[x_id] = None | |
ori_img = img[0:1].clone() | |
# --------------------- Pass through DiT blocks ------------------------ | |
for layer_num, block in enumerate(self.double_blocks): | |
for i in range(len(img)): | |
if callback != None: | |
callback(-1, None, False, True) | |
if pipeline._interrupt: | |
return None | |
double_block_args = [ | |
img[i:i+1], | |
txt[i:i+1], | |
vec[i:i+1], | |
attn_mask, | |
seqlens_q[i:i+1], | |
seqlens_kv[i:i+1], | |
freqs_cis, | |
self.i2v_condition_type, | |
token_replace_vec, | |
frist_frame_token_num, | |
] | |
img[i], txt[i] = block(*double_block_args) | |
double_block_args = None | |
# insert audio feature to img | |
if audio_prompts != None: | |
audio_adapter = getattr(self.double_blocks[layer_num], "audio_adapter", None) | |
if audio_adapter != None: | |
real_img = img[i:i+1,ref_length:].view(1, ot, -1, 3072) | |
real_img = audio_adapter(audio_feature_all_insert[i:i+1], real_img).view(1, -1, 3072) | |
if face_mask != None: | |
real_img *= face_mask[i:i+1] | |
if audio_strength != None and audio_strength != 1: | |
real_img *= audio_strength | |
img[i:i+1, ref_length:] += real_img | |
real_img = None | |
for _, block in enumerate(self.single_blocks): | |
for i in range(len(img)): | |
if callback != None: | |
callback(-1, None, False, True) | |
if pipeline._interrupt: | |
return None | |
single_block_args = [ | |
# x, | |
img[i:i+1], | |
txt[i:i+1], | |
vec[i:i+1], | |
txt_seq_len, | |
attn_mask, | |
seqlens_q[i:i+1], | |
seqlens_kv[i:i+1], | |
(freqs_cos, freqs_sin), | |
self.i2v_condition_type, | |
token_replace_vec, | |
frist_frame_token_num, | |
] | |
img[i], txt[i] = block(*single_block_args) | |
single_block_args = None | |
# img = x[:, :img_seq_len, ...] | |
if self.enable_cache: | |
if len(img) > 1: | |
self.previous_residual[0] = torch.empty_like(img) | |
for i, (x, residual) in enumerate(zip(img, self.previous_residual[0])): | |
if i < len(img) - 1: | |
residual[...] = torch.sub(x, ori_img) | |
else: | |
residual[...] = ori_img | |
torch.sub(x, ori_img, out=residual) | |
x = None | |
else: | |
self.previous_residual[x_id] = ori_img | |
torch.sub(img, ori_img, out=self.previous_residual[x_id]) | |
if ref_length != None: | |
img = img[:, ref_length:] | |
# ---------------------------- Final layer ------------------------------ | |
out_dtype = self.final_layer.linear.weight.dtype | |
vec = vec.to(out_dtype) | |
img_list = [] | |
for img_chunk, vec_chunk in zip(img,vec): | |
img_list.append( self.final_layer(img_chunk.to(out_dtype).unsqueeze(0), vec_chunk.unsqueeze(0))) # (N, T, patch_size ** 2 * out_channels) | |
img = torch.cat(img_list) | |
img_list = None | |
# img = self.unpatchify(img, tt, th, tw) | |
img = self.unpatchify(img, tt, th, tw) | |
return img | |
def unpatchify(self, x, t, h, w): | |
""" | |
x: (N, T, patch_size**2 * C) | |
imgs: (N, H, W, C) | |
""" | |
c = self.unpatchify_channels | |
pt, ph, pw = self.patch_size | |
assert t * h * w == x.shape[1] | |
x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw)) | |
x = torch.einsum("nthwcopq->nctohpwq", x) | |
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) | |
return imgs | |
def params_count(self): | |
counts = { | |
"double": sum( | |
[ | |
sum(p.numel() for p in block.img_attn_qkv.parameters()) | |
+ sum(p.numel() for p in block.img_attn_proj.parameters()) | |
+ sum(p.numel() for p in block.img_mlp.parameters()) | |
+ sum(p.numel() for p in block.txt_attn_qkv.parameters()) | |
+ sum(p.numel() for p in block.txt_attn_proj.parameters()) | |
+ sum(p.numel() for p in block.txt_mlp.parameters()) | |
for block in self.double_blocks | |
] | |
), | |
"single": sum( | |
[ | |
sum(p.numel() for p in block.linear1.parameters()) | |
+ sum(p.numel() for p in block.linear2.parameters()) | |
for block in self.single_blocks | |
] | |
), | |
"total": sum(p.numel() for p in self.parameters()), | |
} | |
counts["attn+mlp"] = counts["double"] + counts["single"] | |
return counts | |
################################################################################# | |
# HunyuanVideo Configs # | |
################################################################################# | |
HUNYUAN_VIDEO_CONFIG = { | |
"HYVideo-T/2": { | |
"mm_double_blocks_depth": 20, | |
"mm_single_blocks_depth": 40, | |
"rope_dim_list": [16, 56, 56], | |
"hidden_size": 3072, | |
"heads_num": 24, | |
"mlp_width_ratio": 4, | |
}, | |
"HYVideo-T/2-cfgdistill": { | |
"mm_double_blocks_depth": 20, | |
"mm_single_blocks_depth": 40, | |
"rope_dim_list": [16, 56, 56], | |
"hidden_size": 3072, | |
"heads_num": 24, | |
"mlp_width_ratio": 4, | |
"guidance_embed": True, | |
}, | |
"HYVideo-S/2": { | |
"mm_double_blocks_depth": 6, | |
"mm_single_blocks_depth": 12, | |
"rope_dim_list": [12, 42, 42], | |
"hidden_size": 480, | |
"heads_num": 5, | |
"mlp_width_ratio": 4, | |
}, | |
'HYVideo-T/2-custom': { # 9.0B / 12.5B | |
"mm_double_blocks_depth": 20, | |
"mm_single_blocks_depth": 40, | |
"rope_dim_list": [16, 56, 56], | |
"hidden_size": 3072, | |
"heads_num": 24, | |
"mlp_width_ratio": 4, | |
'custom' : True | |
}, | |
'HYVideo-T/2-custom-audio': { # 9.0B / 12.5B | |
"mm_double_blocks_depth": 20, | |
"mm_single_blocks_depth": 40, | |
"rope_dim_list": [16, 56, 56], | |
"hidden_size": 3072, | |
"heads_num": 24, | |
"mlp_width_ratio": 4, | |
'custom' : True, | |
'audio_condition' : True, | |
}, | |
'HYVideo-T/2-custom-edit': { # 9.0B / 12.5B | |
"mm_double_blocks_depth": 20, | |
"mm_single_blocks_depth": 40, | |
"rope_dim_list": [16, 56, 56], | |
"hidden_size": 3072, | |
"heads_num": 24, | |
"mlp_width_ratio": 4, | |
'custom' : True, | |
'video_condition' : True, | |
}, | |
'HYVideo-T/2-avatar': { # 9.0B / 12.5B | |
'mm_double_blocks_depth': 20, | |
'mm_single_blocks_depth': 40, | |
'rope_dim_list': [16, 56, 56], | |
'hidden_size': 3072, | |
'heads_num': 24, | |
'mlp_width_ratio': 4, | |
'avatar': True, | |
'audio_condition' : True, | |
}, | |
} |