Spaces:
Running
Running
import torch | |
import triton | |
import triton.language as tl | |
def hunyuan_token_reorder_to_token_major(tensor, fix_len, reorder_len, reorder_num_frame, frame_size): | |
"""Reorder it from frame major to token major!""" | |
assert reorder_len == reorder_num_frame * frame_size | |
assert tensor.shape[2] == fix_len + reorder_len | |
tensor[:, :, :-fix_len, :] = tensor[:, :, :-fix_len:, :].reshape(tensor.shape[0], tensor.shape[1], reorder_num_frame, frame_size, tensor.shape[3]) \ | |
.transpose(2, 3).reshape(tensor.shape[0], tensor.shape[1], reorder_len, tensor.shape[3]) | |
return tensor | |
def hunyuan_token_reorder_to_frame_major(tensor, fix_len, reorder_len, reorder_num_frame, frame_size): | |
"""Reorder it from token major to frame major!""" | |
assert reorder_len == reorder_num_frame * frame_size | |
assert tensor.shape[2] == fix_len + reorder_len | |
tensor[:, :, :-fix_len:, :] = tensor[:, :, :-fix_len:, :].reshape(tensor.shape[0], tensor.shape[1], frame_size, reorder_num_frame, tensor.shape[3]) \ | |
.transpose(2, 3).reshape(tensor.shape[0], tensor.shape[1], reorder_len, tensor.shape[3]) | |
return tensor | |
def hunyuan_sparse_head_placement_kernel( | |
query_ptr, key_ptr, value_ptr, # [cfg, num_heads, seq_len, head_dim] seq_len = context_length + num_frame * frame_size | |
query_out_ptr, key_out_ptr, value_out_ptr, # [cfg, num_heads, seq_len, head_dim] | |
best_mask_idx_ptr, # [cfg, num_heads] | |
query_stride_b, query_stride_h, query_stride_s, query_stride_d, | |
mask_idx_stride_b, mask_idx_stride_h, | |
seq_len: tl.constexpr, | |
head_dim: tl.constexpr, | |
context_length: tl.constexpr, | |
num_frame: tl.constexpr, | |
frame_size: tl.constexpr, | |
BLOCK_SIZE: tl.constexpr | |
): | |
# Copy query, key, value to output | |
# range: [b, h, block_id * block_size: block_id * block_size + block_size, :] | |
cfg = tl.program_id(0) | |
head = tl.program_id(1) | |
block_id = tl.program_id(2) | |
start_id = block_id * BLOCK_SIZE | |
end_id = start_id + BLOCK_SIZE | |
end_id = tl.where(end_id > seq_len, seq_len, end_id) | |
# Load best mask idx (0 is spatial, 1 is temporal) | |
is_temporal = tl.load(best_mask_idx_ptr + cfg * mask_idx_stride_b + head * mask_idx_stride_h) | |
offset_token = tl.arange(0, BLOCK_SIZE) + start_id | |
offset_mask = offset_token < seq_len | |
offset_d = tl.arange(0, head_dim) | |
if is_temporal: | |
frame_id = offset_token // frame_size | |
patch_id = offset_token - frame_id * frame_size | |
offset_store_token = tl.where(offset_token >= seq_len - context_length, offset_token, patch_id * num_frame + frame_id) | |
offset_load = (cfg * query_stride_b + head * query_stride_h + offset_token[:,None] * query_stride_s) + offset_d[None,:] * query_stride_d | |
offset_query = query_ptr + offset_load | |
offset_key = key_ptr + offset_load | |
offset_value = value_ptr + offset_load | |
offset_store = (cfg * query_stride_b + head * query_stride_h + offset_store_token[:,None] * query_stride_s) + offset_d[None,:] * query_stride_d | |
offset_query_out = query_out_ptr + offset_store | |
offset_key_out = key_out_ptr + offset_store | |
offset_value_out = value_out_ptr + offset_store | |
# Maybe tune the pipeline here | |
query = tl.load(offset_query, mask=offset_mask[:,None]) | |
tl.store(offset_query_out, query, mask=offset_mask[:,None]) | |
key = tl.load(offset_key, mask=offset_mask[:,None]) | |
tl.store(offset_key_out, key, mask=offset_mask[:,None]) | |
value = tl.load(offset_value, mask=offset_mask[:,None]) | |
tl.store(offset_value_out, value, mask=offset_mask[:,None]) | |
else: | |
offset_load = (cfg * query_stride_b + head * query_stride_h + offset_token[:,None] * query_stride_s) + offset_d[None,:] * query_stride_d | |
offset_query = query_ptr + offset_load | |
offset_key = key_ptr + offset_load | |
offset_value = value_ptr + offset_load | |
offset_store = offset_load | |
offset_query_out = query_out_ptr + offset_store | |
offset_key_out = key_out_ptr + offset_store | |
offset_value_out = value_out_ptr + offset_store | |
# Maybe tune the pipeline here | |
query = tl.load(offset_query, mask=offset_mask[:,None]) | |
tl.store(offset_query_out, query, mask=offset_mask[:,None]) | |
key = tl.load(offset_key, mask=offset_mask[:,None]) | |
tl.store(offset_key_out, key, mask=offset_mask[:,None]) | |
value = tl.load(offset_value, mask=offset_mask[:,None]) | |
tl.store(offset_value_out, value, mask=offset_mask[:,None]) | |
def hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size): | |
cfg, num_heads, seq_len, head_dim = query.shape | |
BLOCK_SIZE = 128 | |
assert seq_len == context_length + num_frame * frame_size | |
grid = (cfg, num_heads, (seq_len + BLOCK_SIZE - 1) // BLOCK_SIZE) | |
hunyuan_sparse_head_placement_kernel[grid]( | |
query, key, value, | |
query_out, key_out, value_out, | |
best_mask_idx, | |
query.stride(0), query.stride(1), query.stride(2), query.stride(3), | |
best_mask_idx.stride(0), best_mask_idx.stride(1), | |
seq_len, head_dim, context_length, num_frame, frame_size, | |
BLOCK_SIZE | |
) | |
def ref_hunyuan_sparse_head_placement(query, key, value, best_mask_idx, context_length, num_frame, frame_size): | |
cfg, num_heads, seq_len, head_dim = query.shape | |
assert seq_len == context_length + num_frame * frame_size | |
query_out = query.clone() | |
key_out = key.clone() | |
value_out = value.clone() | |
# Spatial | |
query_out[best_mask_idx == 0], key_out[best_mask_idx == 0], value_out[best_mask_idx == 0] = \ | |
query[best_mask_idx == 0], key[best_mask_idx == 0], value[best_mask_idx == 0] | |
# Temporal | |
query_out[best_mask_idx == 1], key_out[best_mask_idx == 1], value_out[best_mask_idx == 1] = \ | |
hunyuan_token_reorder_to_token_major(query[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0), \ | |
hunyuan_token_reorder_to_token_major(key[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0), \ | |
hunyuan_token_reorder_to_token_major(value[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0) | |
return query_out, key_out, value_out | |
def test_hunyuan_sparse_head_placement(): | |
context_length = 226 | |
num_frame = 11 | |
frame_size = 4080 | |
cfg = 2 | |
num_heads = 48 | |
seq_len = context_length + num_frame * frame_size | |
head_dim = 64 | |
dtype = torch.bfloat16 | |
device = torch.device("cuda") | |
query = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device) | |
key = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device) | |
value = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device) | |
best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device) | |
query_out = torch.empty_like(query) | |
key_out = torch.empty_like(key) | |
value_out = torch.empty_like(value) | |
hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size) | |
ref_query_out, ref_key_out, ref_value_out = ref_hunyuan_sparse_head_placement(query, key, value, best_mask_idx, context_length, num_frame, frame_size) | |
torch.testing.assert_close(query_out, ref_query_out) | |
torch.testing.assert_close(key_out, ref_key_out) | |
torch.testing.assert_close(value_out, ref_value_out) | |
def benchmark_hunyuan_sparse_head_placement(): | |
import time | |
context_length = 226 | |
num_frame = 11 | |
frame_size = 4080 | |
cfg = 2 | |
num_heads = 48 | |
seq_len = context_length + num_frame * frame_size | |
head_dim = 64 | |
dtype = torch.bfloat16 | |
device = torch.device("cuda") | |
query = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device) | |
key = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device) | |
value = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device) | |
best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device) | |
query_out = torch.empty_like(query) | |
key_out = torch.empty_like(key) | |
value_out = torch.empty_like(value) | |
warmup = 10 | |
all_iter = 1000 | |
# warmup | |
for _ in range(warmup): | |
hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size) | |
torch.cuda.synchronize() | |
start = time.time() | |
for _ in range(all_iter): | |
hunyuan_sparse_head_placement(query, key, value, query_out, key_out, value_out, best_mask_idx, context_length, num_frame, frame_size) | |
torch.cuda.synchronize() | |
end = time.time() | |
print(f"Triton Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms") | |
print(f"Triton Total Bandwidth: {query.nelement() * query.element_size() * 3 * 2 * all_iter / (end - start) / 1e9:.2f} GB/s") | |
torch.cuda.synchronize() | |
start = time.time() | |
for _ in range(all_iter): | |
ref_hunyuan_sparse_head_placement(query, key, value, best_mask_idx, context_length, num_frame, frame_size) | |
torch.cuda.synchronize() | |
end = time.time() | |
print(f"Reference Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms") | |
print(f"Reference Total Bandwidth: {query.nelement() * query.element_size() * 3 * 2 * all_iter / (end - start) / 1e9:.2f} GB/s") | |
def hunyuan_hidden_states_placement_kernel( | |
hidden_states_ptr, # [cfg, num_heads, seq_len, head_dim] seq_len = context_length + num_frame * frame_size | |
hidden_states_out_ptr, # [cfg, num_heads, seq_len, head_dim] | |
best_mask_idx_ptr, # [cfg, num_heads] | |
hidden_states_stride_b, hidden_states_stride_h, hidden_states_stride_s, hidden_states_stride_d, | |
mask_idx_stride_b, mask_idx_stride_h, | |
seq_len: tl.constexpr, | |
head_dim: tl.constexpr, | |
context_length: tl.constexpr, | |
num_frame: tl.constexpr, | |
frame_size: tl.constexpr, | |
BLOCK_SIZE: tl.constexpr | |
): | |
# Copy hidden_states to output | |
# range: [b, h, block_id * block_size: block_id * block_size + block_size, :] | |
cfg = tl.program_id(0) | |
head = tl.program_id(1) | |
block_id = tl.program_id(2) | |
start_id = block_id * BLOCK_SIZE | |
end_id = start_id + BLOCK_SIZE | |
end_id = tl.where(end_id > seq_len, seq_len, end_id) | |
# Load best mask idx (0 is spatial, 1 is temporal) | |
is_temporal = tl.load(best_mask_idx_ptr + cfg * mask_idx_stride_b + head * mask_idx_stride_h) | |
offset_token = tl.arange(0, BLOCK_SIZE) + start_id | |
offset_mask = offset_token < seq_len | |
offset_d = tl.arange(0, head_dim) | |
if is_temporal: | |
patch_id = offset_token // num_frame | |
frame_id = offset_token - patch_id * num_frame | |
offset_store_token = tl.where(offset_token >= seq_len - context_length, offset_token, frame_id * frame_size + patch_id) | |
offset_load = (cfg * hidden_states_stride_b + head * hidden_states_stride_h + offset_token[:,None] * hidden_states_stride_s) + offset_d[None,:] * hidden_states_stride_d | |
offset_hidden_states = hidden_states_ptr + offset_load | |
offset_store = (cfg * hidden_states_stride_b + head * hidden_states_stride_h + offset_store_token[:,None] * hidden_states_stride_s) + offset_d[None,:] * hidden_states_stride_d | |
offset_hidden_states_out = hidden_states_out_ptr + offset_store | |
# Maybe tune the pipeline here | |
hidden_states = tl.load(offset_hidden_states, mask=offset_mask[:,None]) | |
tl.store(offset_hidden_states_out, hidden_states, mask=offset_mask[:,None]) | |
else: | |
offset_load = (cfg * hidden_states_stride_b + head * hidden_states_stride_h + offset_token[:,None] * hidden_states_stride_s) + offset_d[None,:] * hidden_states_stride_d | |
offset_hidden_states = hidden_states_ptr + offset_load | |
offset_store = offset_load | |
offset_hidden_states_out = hidden_states_out_ptr + offset_store | |
# Maybe tune the pipeline here | |
hidden_states = tl.load(offset_hidden_states, mask=offset_mask[:,None]) | |
tl.store(offset_hidden_states_out, hidden_states, mask=offset_mask[:,None]) | |
def hunyuan_hidden_states_placement(hidden_states, hidden_states_out, best_mask_idx, context_length, num_frame, frame_size): | |
cfg, num_heads, seq_len, head_dim = hidden_states.shape | |
BLOCK_SIZE = 128 | |
assert seq_len == context_length + num_frame * frame_size | |
grid = (cfg, num_heads, (seq_len + BLOCK_SIZE - 1) // BLOCK_SIZE) | |
hunyuan_hidden_states_placement_kernel[grid]( | |
hidden_states, | |
hidden_states_out, | |
best_mask_idx, | |
hidden_states.stride(0), hidden_states.stride(1), hidden_states.stride(2), hidden_states.stride(3), | |
best_mask_idx.stride(0), best_mask_idx.stride(1), | |
seq_len, head_dim, context_length, num_frame, frame_size, | |
BLOCK_SIZE | |
) | |
return hidden_states_out | |
def ref_hunyuan_hidden_states_placement(hidden_states, output_hidden_states, best_mask_idx, context_length, num_frame, frame_size): | |
cfg, num_heads, seq_len, head_dim = hidden_states.shape | |
assert seq_len == context_length + num_frame * frame_size | |
# Spatial | |
output_hidden_states[best_mask_idx == 0] = hidden_states[best_mask_idx == 0] | |
# Temporal | |
output_hidden_states[best_mask_idx == 1] = hunyuan_token_reorder_to_frame_major(hidden_states[best_mask_idx == 1].unsqueeze(0), context_length, num_frame * frame_size, num_frame, frame_size).squeeze(0) | |
def test_hunyuan_hidden_states_placement(): | |
context_length = 226 | |
num_frame = 11 | |
frame_size = 4080 | |
cfg = 2 | |
num_heads = 48 | |
seq_len = context_length + num_frame * frame_size | |
head_dim = 64 | |
dtype = torch.bfloat16 | |
device = torch.device("cuda") | |
hidden_states = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device) | |
best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device) | |
hidden_states_out1 = torch.empty_like(hidden_states) | |
hidden_states_out2 = torch.empty_like(hidden_states) | |
hunyuan_hidden_states_placement(hidden_states, hidden_states_out1, best_mask_idx, context_length, num_frame, frame_size) | |
ref_hunyuan_hidden_states_placement(hidden_states, hidden_states_out2, best_mask_idx, context_length, num_frame, frame_size) | |
torch.testing.assert_close(hidden_states_out1, hidden_states_out2) | |
def benchmark_hunyuan_hidden_states_placement(): | |
import time | |
context_length = 226 | |
num_frame = 11 | |
frame_size = 4080 | |
cfg = 2 | |
num_heads = 48 | |
seq_len = context_length + num_frame * frame_size | |
head_dim = 64 | |
dtype = torch.bfloat16 | |
device = torch.device("cuda") | |
hidden_states = torch.randn(cfg, num_heads, seq_len, head_dim, dtype=dtype, device=device) | |
best_mask_idx = torch.randint(0, 2, (cfg, num_heads), device=device) | |
hidden_states_out = torch.empty_like(hidden_states) | |
warmup = 10 | |
all_iter = 1000 | |
# warmup | |
for _ in range(warmup): | |
hunyuan_hidden_states_placement(hidden_states, hidden_states_out, best_mask_idx, context_length, num_frame, frame_size) | |
torch.cuda.synchronize() | |
start = time.time() | |
for _ in range(all_iter): | |
hunyuan_hidden_states_placement(hidden_states, hidden_states_out, best_mask_idx, context_length, num_frame, frame_size) | |
torch.cuda.synchronize() | |
end = time.time() | |
print(f"Triton Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms") | |
print(f"Triton Total Bandwidth: {hidden_states.nelement() * hidden_states.element_size() * 2 * all_iter / (end - start) / 1e9:.2f} GB/s") | |
torch.cuda.synchronize() | |
start = time.time() | |
for _ in range(all_iter): | |
ref_hunyuan_hidden_states_placement(hidden_states, hidden_states.clone(), best_mask_idx, context_length, num_frame, frame_size) | |
torch.cuda.synchronize() | |
end = time.time() | |
print(f"Reference Elapsed Time: {(end - start) / all_iter * 1e3:.2f} ms") | |
print(f"Reference Total Bandwidth: {hidden_states.nelement() * hidden_states.element_size() * 2 * all_iter / (end - start) / 1e9:.2f} GB/s") | |
if __name__ == "__main__": | |
test_hunyuan_sparse_head_placement() | |
benchmark_hunyuan_sparse_head_placement() | |
test_hunyuan_hidden_states_placement() | |
benchmark_hunyuan_hidden_states_placement() | |