Spaces:
Running
Running
"""Mask Mod for Image2Video""" | |
from math import floor | |
import torch | |
from torch import Tensor | |
from functools import lru_cache | |
from typing import Optional, List | |
import torch | |
from torch.nn.attention.flex_attention import ( | |
create_block_mask, | |
) | |
def create_block_mask_cached(score_mod, B, H, M, N, device="cuda", _compile=False): | |
block_mask = create_block_mask(score_mod, B, H, M, N, device=device, _compile=_compile) | |
return block_mask | |
def generate_temporal_head_mask_mod(context_length: int = 226, prompt_length: int = 226, num_frames: int = 13, token_per_frame: int = 1350, mul: int = 2): | |
def round_to_multiple(idx): | |
return floor(idx / 128) * 128 | |
real_length = num_frames * token_per_frame + prompt_length | |
def temporal_mask_mod(b, h, q_idx, kv_idx): | |
real_mask = (kv_idx < real_length) & (q_idx < real_length) | |
fake_mask = (kv_idx >= real_length) & (q_idx >= real_length) | |
two_frame = round_to_multiple(mul * token_per_frame) | |
temporal_head_mask = (torch.abs(q_idx - kv_idx) < two_frame) | |
text_column_mask = (num_frames * token_per_frame <= kv_idx) & (kv_idx < real_length) | |
text_row_mask = (num_frames * token_per_frame <= q_idx) & (q_idx < real_length) | |
video_mask = temporal_head_mask | text_column_mask | text_row_mask | |
real_mask = real_mask & video_mask | |
return real_mask | fake_mask | |
return temporal_mask_mod | |