Spaces:
Running
Running
import sys | |
import os | |
import json | |
import time | |
import psutil | |
# import ffmpeg | |
import imageio | |
from PIL import Image | |
import cv2 | |
import torch | |
import numpy as np | |
import gradio as gr | |
from .tools.painter import mask_painter | |
from .tools.interact_tools import SamControler | |
from .tools.misc import get_device | |
from .tools.download_util import load_file_from_url | |
from .utils.get_default_model import get_matanyone_model | |
from .matanyone.inference.inference_core import InferenceCore | |
from .matanyone_wrapper import matanyone | |
arg_device = "cuda" | |
arg_sam_model_type="vit_h" | |
arg_mask_save = False | |
model_loaded = False | |
model = None | |
matanyone_model = None | |
# SAM generator | |
class MaskGenerator(): | |
def __init__(self, sam_checkpoint, device): | |
global args_device | |
args_device = device | |
self.samcontroler = SamControler(sam_checkpoint, arg_sam_model_type, arg_device) | |
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True): | |
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask) | |
return mask, logit, painted_image | |
# convert points input to prompt state | |
def get_prompt(click_state, click_input): | |
inputs = json.loads(click_input) | |
points = click_state[0] | |
labels = click_state[1] | |
for input in inputs: | |
points.append(input[:2]) | |
labels.append(input[2]) | |
click_state[0] = points | |
click_state[1] = labels | |
prompt = { | |
"prompt_type":["click"], | |
"input_point":click_state[0], | |
"input_label":click_state[1], | |
"multimask_output":"True", | |
} | |
return prompt | |
def get_frames_from_image(image_input, image_state): | |
""" | |
Args: | |
video_path:str | |
timestamp:float64 | |
Return | |
[[0:nearest_frame], [nearest_frame:], nearest_frame] | |
""" | |
user_name = time.time() | |
frames = [image_input] * 2 # hardcode: mimic a video with 2 frames | |
image_size = (frames[0].shape[0],frames[0].shape[1]) | |
# initialize video_state | |
image_state = { | |
"user_name": user_name, | |
"image_name": "output.png", | |
"origin_images": frames, | |
"painted_images": frames.copy(), | |
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames), | |
"logits": [None]*len(frames), | |
"select_frame_number": 0, | |
"last_frame_numer": 0, | |
"fps": None | |
} | |
image_info = "Image Name: N/A,\nFPS: N/A,\nTotal Frames: {},\nImage Size:{}".format(len(frames), image_size) | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(image_state["origin_images"][0]) | |
return image_state, image_info, image_state["origin_images"][0], \ | |
gr.update(visible=True, maximum=10, value=10), gr.update(visible=False, maximum=len(frames), value=len(frames)), \ | |
gr.update(visible=True), gr.update(visible=True), \ | |
gr.update(visible=True), gr.update(visible=True),\ | |
gr.update(visible=True), gr.update(visible=True), \ | |
gr.update(visible=True), gr.update(visible=False), \ | |
gr.update(visible=False), gr.update(visible=True), \ | |
gr.update(visible=True) | |
# extract frames from upload video | |
def get_frames_from_video(video_input, video_state): | |
""" | |
Args: | |
video_path:str | |
timestamp:float64 | |
Return | |
[[0:nearest_frame], [nearest_frame:], nearest_frame] | |
""" | |
while model == None: | |
time.sleep(1) | |
video_path = video_input | |
frames = [] | |
user_name = time.time() | |
# extract Audio | |
# try: | |
# audio_path = video_input.replace(".mp4", "_audio.wav") | |
# ffmpeg.input(video_path).output(audio_path, format='wav', acodec='pcm_s16le', ac=2, ar='44100').run(overwrite_output=True, quiet=True) | |
# except Exception as e: | |
# print(f"Audio extraction error: {str(e)}") | |
# audio_path = "" # Set to "" if extraction fails | |
# print(f'audio_path: {audio_path}') | |
audio_path = "" | |
# extract frames | |
try: | |
cap = cv2.VideoCapture(video_path) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if ret == True: | |
current_memory_usage = psutil.virtual_memory().percent | |
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
if current_memory_usage > 90: | |
break | |
else: | |
break | |
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e: | |
print("read_frame_source:{} error. {}\n".format(video_path, str(e))) | |
image_size = (frames[0].shape[0],frames[0].shape[1]) | |
# resize if resolution too big | |
if image_size[0]>=1280 and image_size[0]>=1280: | |
scale = 1080 / min(image_size) | |
new_w = int(image_size[1] * scale) | |
new_h = int(image_size[0] * scale) | |
# update frames | |
frames = [cv2.resize(f, (new_w, new_h), interpolation=cv2.INTER_AREA) for f in frames] | |
# update image_size | |
image_size = (frames[0].shape[0],frames[0].shape[1]) | |
# initialize video_state | |
video_state = { | |
"user_name": user_name, | |
"video_name": os.path.split(video_path)[-1], | |
"origin_images": frames, | |
"painted_images": frames.copy(), | |
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames), | |
"logits": [None]*len(frames), | |
"select_frame_number": 0, | |
"last_frame_number": 0, | |
"fps": fps, | |
"audio": audio_path | |
} | |
video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), len(frames), image_size) | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0]) | |
return video_state, video_info, video_state["origin_images"][0], \ | |
gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=True, maximum=len(frames), value=len(frames)), gr.update(visible=False, maximum=len(frames), value=len(frames)), \ | |
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), \ | |
gr.update(visible=True), gr.update(visible=True),\ | |
gr.update(visible=True), gr.update(visible=False), \ | |
gr.update(visible=False), gr.update(visible=False), \ | |
gr.update(visible=False), gr.update(visible=True), \ | |
gr.update(visible=True) | |
# get the select frame from gradio slider | |
def select_video_template(image_selection_slider, video_state, interactive_state): | |
image_selection_slider -= 1 | |
video_state["select_frame_number"] = image_selection_slider | |
# once select a new template frame, set the image in sam | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider]) | |
return video_state["painted_images"][image_selection_slider], video_state, interactive_state | |
def select_image_template(image_selection_slider, video_state, interactive_state): | |
image_selection_slider = 0 # fixed for image | |
video_state["select_frame_number"] = image_selection_slider | |
# once select a new template frame, set the image in sam | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider]) | |
return video_state["painted_images"][image_selection_slider], video_state, interactive_state | |
# set the tracking end frame | |
def get_end_number(track_pause_number_slider, video_state, interactive_state): | |
interactive_state["track_end_number"] = track_pause_number_slider | |
return video_state["painted_images"][track_pause_number_slider],interactive_state | |
# use sam to get the mask | |
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData ): # | |
""" | |
Args: | |
template_frame: PIL.Image | |
point_prompt: flag for positive or negative button click | |
click_state: [[points], [labels]] | |
""" | |
if point_prompt == "Positive": | |
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1]) | |
interactive_state["positive_click_times"] += 1 | |
else: | |
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1]) | |
interactive_state["negative_click_times"] += 1 | |
# prompt for sam model | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]]) | |
prompt = get_prompt(click_state=click_state, click_input=coordinate) | |
mask, logit, painted_image = model.first_frame_click( | |
image=video_state["origin_images"][video_state["select_frame_number"]], | |
points=np.array(prompt["input_point"]), | |
labels=np.array(prompt["input_label"]), | |
multimask=prompt["multimask_output"], | |
) | |
video_state["masks"][video_state["select_frame_number"]] = mask | |
video_state["logits"][video_state["select_frame_number"]] = logit | |
video_state["painted_images"][video_state["select_frame_number"]] = painted_image | |
return painted_image, video_state, interactive_state | |
def add_multi_mask(video_state, interactive_state, mask_dropdown): | |
mask = video_state["masks"][video_state["select_frame_number"]] | |
interactive_state["multi_mask"]["masks"].append(mask) | |
interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) | |
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) | |
select_frame = show_mask(video_state, interactive_state, mask_dropdown) | |
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]] | |
def clear_click(video_state, click_state): | |
click_state = [[],[]] | |
template_frame = video_state["origin_images"][video_state["select_frame_number"]] | |
return template_frame, click_state | |
def remove_multi_mask(interactive_state, mask_dropdown): | |
interactive_state["multi_mask"]["mask_names"]= [] | |
interactive_state["multi_mask"]["masks"] = [] | |
return interactive_state, gr.update(choices=[],value=[]) | |
def show_mask(video_state, interactive_state, mask_dropdown): | |
mask_dropdown.sort() | |
if video_state["origin_images"]: | |
select_frame = video_state["origin_images"][video_state["select_frame_number"]] | |
for i in range(len(mask_dropdown)): | |
mask_number = int(mask_dropdown[i].split("_")[1]) - 1 | |
mask = interactive_state["multi_mask"]["masks"][mask_number] | |
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2) | |
return select_frame | |
def save_video(frames, output_path, fps): | |
writer = imageio.get_writer( output_path, fps=fps, codec='libx264', quality=8) | |
for frame in frames: | |
writer.append_data(frame) | |
writer.close() | |
return output_path | |
# image matting | |
def image_matting(video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, refine_iter): | |
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg) | |
if interactive_state["track_end_number"]: | |
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] | |
else: | |
following_frames = video_state["origin_images"][video_state["select_frame_number"]:] | |
if interactive_state["multi_mask"]["masks"]: | |
if len(mask_dropdown) == 0: | |
mask_dropdown = ["mask_001"] | |
mask_dropdown.sort() | |
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1])) | |
for i in range(1,len(mask_dropdown)): | |
mask_number = int(mask_dropdown[i].split("_")[1]) - 1 | |
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1) | |
video_state["masks"][video_state["select_frame_number"]]= template_mask | |
else: | |
template_mask = video_state["masks"][video_state["select_frame_number"]] | |
# operation error | |
if len(np.unique(template_mask))==1: | |
template_mask[0][0]=1 | |
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size, n_warmup=refine_iter) | |
foreground_mat = False | |
output_frames = [] | |
for frame_origin, frame_alpha in zip(following_frames, alpha): | |
if foreground_mat: | |
frame_alpha[frame_alpha > 127] = 255 | |
frame_alpha[frame_alpha <= 127] = 0 | |
else: | |
frame_temp = frame_alpha.copy() | |
frame_alpha[frame_temp > 127] = 0 | |
frame_alpha[frame_temp <= 127] = 255 | |
output_frame = np.bitwise_and(frame_origin, 255-frame_alpha) | |
frame_grey = frame_alpha.copy() | |
frame_grey[frame_alpha == 255] = 255 | |
output_frame += frame_grey | |
output_frames.append(output_frame) | |
foreground = output_frames | |
foreground_output = Image.fromarray(foreground[-1]) | |
alpha_output = Image.fromarray(alpha[-1][:,:,0]) | |
return foreground_output, gr.update(visible=True) | |
# video matting | |
def video_matting(video_state, end_slider, matting_type, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size): | |
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg) | |
# if interactive_state["track_end_number"]: | |
# following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] | |
# else: | |
end_slider = max(video_state["select_frame_number"] +1, end_slider) | |
following_frames = video_state["origin_images"][video_state["select_frame_number"]: end_slider] | |
if interactive_state["multi_mask"]["masks"]: | |
if len(mask_dropdown) == 0: | |
mask_dropdown = ["mask_001"] | |
mask_dropdown.sort() | |
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1])) | |
for i in range(1,len(mask_dropdown)): | |
mask_number = int(mask_dropdown[i].split("_")[1]) - 1 | |
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1) | |
video_state["masks"][video_state["select_frame_number"]]= template_mask | |
else: | |
template_mask = video_state["masks"][video_state["select_frame_number"]] | |
fps = video_state["fps"] | |
audio_path = video_state["audio"] | |
# operation error | |
if len(np.unique(template_mask))==1: | |
template_mask[0][0]=1 | |
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size) | |
output_frames = [] | |
foreground_mat = matting_type == "Foreground" | |
if not foreground_mat: | |
new_alpha = [] | |
for frame_alpha in alpha: | |
frame_temp = frame_alpha.copy() | |
frame_alpha[frame_temp > 127] = 0 | |
frame_alpha[frame_temp <= 127] = 255 | |
new_alpha.append(frame_alpha) | |
alpha = new_alpha | |
# for frame_origin, frame_alpha in zip(following_frames, alpha): | |
# if foreground_mat: | |
# frame_alpha[frame_alpha > 127] = 255 | |
# frame_alpha[frame_alpha <= 127] = 0 | |
# else: | |
# frame_temp = frame_alpha.copy() | |
# frame_alpha[frame_temp > 127] = 0 | |
# frame_alpha[frame_temp <= 127] = 255 | |
# output_frame = np.bitwise_and(frame_origin, 255-frame_alpha) | |
# frame_grey = frame_alpha.copy() | |
# frame_grey[frame_alpha == 255] = 127 | |
# output_frame += frame_grey | |
# output_frames.append(output_frame) | |
foreground = following_frames | |
if not os.path.exists("mask_outputs"): | |
os.makedirs("mask_outputs") | |
file_name= video_state["video_name"] | |
file_name = ".".join(file_name.split(".")[:-1]) | |
foreground_output = save_video(foreground, output_path="./mask_outputs/{}_fg.mp4".format(file_name), fps=fps) | |
# foreground_output = generate_video_from_frames(foreground, output_path="./results/{}_fg.mp4".format(video_state["video_name"]), fps=fps, audio_path=audio_path) # import video_input to name the output video | |
alpha_output = save_video(alpha, output_path="./mask_outputs/{}_alpha.mp4".format(file_name), fps=fps) | |
# alpha_output = generate_video_from_frames(alpha, output_path="./results/{}_alpha.mp4".format(video_state["video_name"]), fps=fps, gray2rgb=True, audio_path=audio_path) # import video_input to name the output video | |
return foreground_output, alpha_output, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) | |
def show_outputs(): | |
return gr.update(visible=True), gr.update(visible=True) | |
def add_audio_to_video(video_path, audio_path, output_path): | |
try: | |
video_input = ffmpeg.input(video_path) | |
audio_input = ffmpeg.input(audio_path) | |
_ = ( | |
ffmpeg | |
.output(video_input, audio_input, output_path, vcodec="copy", acodec="aac") | |
.run(overwrite_output=True, capture_stdout=True, capture_stderr=True) | |
) | |
return output_path | |
except ffmpeg.Error as e: | |
print(f"FFmpeg error:\n{e.stderr.decode()}") | |
return None | |
def generate_video_from_frames(frames, output_path, fps=30, gray2rgb=False, audio_path=""): | |
""" | |
Generates a video from a list of frames. | |
Args: | |
frames (list of numpy arrays): The frames to include in the video. | |
output_path (str): The path to save the generated video. | |
fps (int, optional): The frame rate of the output video. Defaults to 30. | |
""" | |
frames = torch.from_numpy(np.asarray(frames)) | |
_, h, w, _ = frames.shape | |
if gray2rgb: | |
frames = np.repeat(frames, 3, axis=3) | |
if not os.path.exists(os.path.dirname(output_path)): | |
os.makedirs(os.path.dirname(output_path)) | |
video_temp_path = output_path.replace(".mp4", "_temp.mp4") | |
# resize back to ensure input resolution | |
imageio.mimwrite(video_temp_path, frames, fps=fps, quality=7, | |
codec='libx264', ffmpeg_params=["-vf", f"scale={w}:{h}"]) | |
# add audio to video if audio path exists | |
if audio_path != "" and os.path.exists(audio_path): | |
output_path = add_audio_to_video(video_temp_path, audio_path, output_path) | |
os.remove(video_temp_path) | |
return output_path | |
else: | |
return video_temp_path | |
# reset all states for a new input | |
def restart(): | |
return { | |
"user_name": "", | |
"video_name": "", | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"inpaint_masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 30 | |
}, { | |
"inference_times": 0, | |
"negative_click_times" : 0, | |
"positive_click_times": 0, | |
"mask_save": False, | |
"multi_mask": { | |
"mask_names": [], | |
"masks": [] | |
}, | |
"track_end_number": None, | |
}, [[],[]], None, None, \ | |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\ | |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ | |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ | |
gr.update(visible=False), gr.update(visible=False, choices=[], value=[]), "", gr.update(visible=False) | |
def load_unload_models(selected): | |
global model_loaded | |
global model | |
global matanyone_model | |
if selected: | |
# print("Matanyone Tab Selected") | |
if model_loaded: | |
model.samcontroler.sam_controler.model.to(arg_device) | |
matanyone_model.to(arg_device) | |
else: | |
# args, defined in track_anything.py | |
sam_checkpoint_url_dict = { | |
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", | |
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", | |
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth" | |
} | |
# os.path.join('.') | |
from mmgp import offload | |
# sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[arg_sam_model_type], ".") | |
sam_checkpoint = None | |
transfer_stream = torch.cuda.Stream() | |
with torch.cuda.stream(transfer_stream): | |
# initialize sams | |
model = MaskGenerator(sam_checkpoint, arg_device) | |
from .matanyone.model.matanyone import MatAnyone | |
matanyone_model = MatAnyone.from_pretrained("PeiqingYang/MatAnyone") | |
# pipe ={"mat" : matanyone_model, "sam" :model.samcontroler.sam_controler.model } | |
# offload.profile(pipe) | |
matanyone_model = matanyone_model.to(arg_device).eval() | |
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg) | |
model_loaded = True | |
else: | |
# print("Matanyone Tab UnSelected") | |
import gc | |
model.samcontroler.sam_controler.model.to("cpu") | |
matanyone_model.to("cpu") | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_vmc_event_handler(): | |
return load_unload_models | |
def export_to_vace_video_input(foreground_video_output): | |
gr.Info("Masked Video Input transferred to Vace For Inpainting") | |
return "V#" + str(time.time()), foreground_video_output | |
def export_image(image_refs, image_output): | |
gr.Info("Masked Image transferred to Current Video") | |
# return "MV#" + str(time.time()), foreground_video_output, alpha_video_output | |
if image_refs == None: | |
image_refs =[] | |
image_refs.append( image_output) | |
return image_refs | |
def export_to_current_video_engine(model_type, foreground_video_output, alpha_video_output): | |
gr.Info("Original Video and Full Mask have been transferred") | |
# return "MV#" + str(time.time()), foreground_video_output, alpha_video_output | |
if "custom_edit" in model_type and False: | |
return gr.update(), alpha_video_output | |
else: | |
return foreground_video_output, alpha_video_output | |
def teleport_to_video_tab(tab_state): | |
from wgp import set_new_tab | |
set_new_tab(tab_state, 0) | |
return gr.Tabs(selected="video_gen") | |
def display(tabs, tab_state, model_choice, vace_video_input, vace_video_mask, vace_image_refs, video_prompt_video_guide_trigger): | |
# my_tab.select(fn=load_unload_models, inputs=[], outputs=[]) | |
media_url = "https://github.com/pq-yang/MatAnyone/releases/download/media/" | |
# download assets | |
gr.Markdown("<B>Mast Edition is provided by MatAnyone</B>") | |
gr.Markdown("If you have some trouble creating the perfect mask, be aware of these tips:") | |
gr.Markdown("- Using the Matanyone Settings you can also define Negative Point Prompts to remove parts of the current selection.") | |
gr.Markdown("- Sometime it is very hard to fit everything you want in a single mask, it may be much easier to combine multiple independent sub Masks before producing the Matting : each sub Mask is created by selecting an area of an image and by clicking the Add Mask button. Sub masks can then be enabled / disabled in the Matanyone settings.") | |
with gr.Column( visible=True): | |
with gr.Row(): | |
with gr.Accordion("Video Tutorial (click to expand)", open=False, elem_classes="custom-bg"): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Case 1: Single Target") | |
gr.Video(value="preprocessing/matanyone/tutorial_single_target.mp4", elem_classes="video") | |
with gr.Column(): | |
gr.Markdown("### Case 2: Multiple Targets") | |
gr.Video(value="preprocessing/matanyone/tutorial_multi_targets.mp4", elem_classes="video") | |
with gr.Tabs(): | |
with gr.TabItem("Video"): | |
click_state = gr.State([[],[]]) | |
interactive_state = gr.State({ | |
"inference_times": 0, | |
"negative_click_times" : 0, | |
"positive_click_times": 0, | |
"mask_save": arg_mask_save, | |
"multi_mask": { | |
"mask_names": [], | |
"masks": [] | |
}, | |
"track_end_number": None, | |
} | |
) | |
video_state = gr.State( | |
{ | |
"user_name": "", | |
"video_name": "", | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"inpaint_masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 16, | |
"audio": "", | |
} | |
) | |
with gr.Column( visible=True): | |
with gr.Row(): | |
with gr.Accordion('MatAnyone Settings (click to expand)', open=False): | |
with gr.Row(): | |
erode_kernel_size = gr.Slider(label='Erode Kernel Size', | |
minimum=0, | |
maximum=30, | |
step=1, | |
value=10, | |
info="Erosion on the added mask", | |
interactive=True) | |
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size', | |
minimum=0, | |
maximum=30, | |
step=1, | |
value=10, | |
info="Dilation on the added mask", | |
interactive=True) | |
with gr.Row(): | |
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Start Frame", info="Choose the start frame for target assignment and video matting", visible=False) | |
end_selection_slider = gr.Slider(minimum=1, maximum=300, step=1, value=81, label="Last Frame to Process", info="Last Frame to Process", visible=False) | |
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="End frame", visible=False) | |
with gr.Row(): | |
point_prompt = gr.Radio( | |
choices=["Positive", "Negative"], | |
value="Positive", | |
label="Point Prompt", | |
info="Click to add positive or negative point for target mask", | |
interactive=True, | |
visible=False, | |
min_width=100, | |
scale=1) | |
matting_type = gr.Radio( | |
choices=["Foreground", "Background"], | |
value="Foreground", | |
label="Matting Type", | |
info="Type of Video Matting to Generate", | |
interactive=True, | |
visible=False, | |
min_width=100, | |
scale=1) | |
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False, scale=2) | |
# input video | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
gr.Markdown("## Step1: Upload video") | |
with gr.Column(scale=2): | |
step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
video_input = gr.Video(label="Input Video", elem_classes="video") | |
extract_frames_button = gr.Button(value="Load Video", interactive=True, elem_classes="new_button") | |
with gr.Column(scale=2): | |
video_info = gr.Textbox(label="Video Info", visible=False) | |
template_frame = gr.Image(label="Start Frame", type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image") | |
with gr.Row(): | |
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, min_width=100) | |
add_mask_button = gr.Button(value="Set Mask", interactive=True, visible=False, min_width=100) | |
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, min_width=100) # no use | |
matting_button = gr.Button(value="Generate Video Matting", interactive=True, visible=False, min_width=100) | |
with gr.Row(): | |
gr.Markdown("") | |
# output video | |
with gr.Column() as output_row: #equal_height=True | |
with gr.Row(): | |
with gr.Column(scale=2): | |
foreground_video_output = gr.Video(label="Original Video Input", visible=False, elem_classes="video") | |
foreground_output_button = gr.Button(value="Black & White Video Output", visible=False, elem_classes="new_button") | |
with gr.Column(scale=2): | |
alpha_video_output = gr.Video(label="B & W Mask Video Output", visible=False, elem_classes="video") | |
alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button") | |
with gr.Row(): | |
with gr.Row(visible= False): | |
export_to_vace_video_14B_btn = gr.Button("Export to current Video Input Video For Inpainting", visible= False) | |
with gr.Row(visible= True): | |
export_to_current_video_engine_btn = gr.Button("Export to Control Video Input and Video Mask Input", visible= False) | |
export_to_current_video_engine_btn.click( fn=export_to_current_video_engine, inputs= [model_choice, foreground_video_output, alpha_video_output], outputs= [vace_video_input, vace_video_mask]).then( #video_prompt_video_guide_trigger, | |
fn=teleport_to_video_tab, inputs= [tab_state], outputs= [tabs]) | |
# first step: get the video information | |
extract_frames_button.click( | |
fn=get_frames_from_video, | |
inputs=[ | |
video_input, video_state | |
], | |
outputs=[video_state, video_info, template_frame, | |
image_selection_slider, end_selection_slider, track_pause_number_slider, point_prompt, matting_type, clear_button_click, add_mask_button, matting_button, template_frame, | |
foreground_video_output, alpha_video_output, foreground_output_button, alpha_output_button, mask_dropdown, step2_title] | |
) | |
# second step: select images from slider | |
image_selection_slider.release(fn=select_video_template, | |
inputs=[image_selection_slider, video_state, interactive_state], | |
outputs=[template_frame, video_state, interactive_state], api_name="select_image") | |
track_pause_number_slider.release(fn=get_end_number, | |
inputs=[track_pause_number_slider, video_state, interactive_state], | |
outputs=[template_frame, interactive_state], api_name="end_image") | |
# click select image to get mask using sam | |
template_frame.select( | |
fn=sam_refine, | |
inputs=[video_state, point_prompt, click_state, interactive_state], | |
outputs=[template_frame, video_state, interactive_state] | |
) | |
# add different mask | |
add_mask_button.click( | |
fn=add_multi_mask, | |
inputs=[video_state, interactive_state, mask_dropdown], | |
outputs=[interactive_state, mask_dropdown, template_frame, click_state] | |
) | |
remove_mask_button.click( | |
fn=remove_multi_mask, | |
inputs=[interactive_state, mask_dropdown], | |
outputs=[interactive_state, mask_dropdown] | |
) | |
# video matting | |
matting_button.click( | |
fn=show_outputs, | |
inputs=[], | |
outputs=[foreground_video_output, alpha_video_output]).then( | |
fn=video_matting, | |
inputs=[video_state, end_selection_slider, matting_type, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size], | |
outputs=[foreground_video_output, alpha_video_output,foreground_video_output, alpha_video_output, export_to_vace_video_14B_btn, export_to_current_video_engine_btn] | |
) | |
# click to get mask | |
mask_dropdown.change( | |
fn=show_mask, | |
inputs=[video_state, interactive_state, mask_dropdown], | |
outputs=[template_frame] | |
) | |
# clear input | |
video_input.change( | |
fn=restart, | |
inputs=[], | |
outputs=[ | |
video_state, | |
interactive_state, | |
click_state, | |
foreground_video_output, alpha_video_output, | |
template_frame, | |
image_selection_slider, end_selection_slider, track_pause_number_slider,point_prompt, export_to_vace_video_14B_btn, export_to_current_video_engine_btn, matting_type, clear_button_click, | |
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title | |
], | |
queue=False, | |
show_progress=False) | |
video_input.clear( | |
fn=restart, | |
inputs=[], | |
outputs=[ | |
video_state, | |
interactive_state, | |
click_state, | |
foreground_video_output, alpha_video_output, | |
template_frame, | |
image_selection_slider , end_selection_slider, track_pause_number_slider,point_prompt, export_to_vace_video_14B_btn, export_to_current_video_engine_btn, matting_type, clear_button_click, | |
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title | |
], | |
queue=False, | |
show_progress=False) | |
# points clear | |
clear_button_click.click( | |
fn = clear_click, | |
inputs = [video_state, click_state,], | |
outputs = [template_frame,click_state], | |
) | |
with gr.TabItem("Image"): | |
click_state = gr.State([[],[]]) | |
interactive_state = gr.State({ | |
"inference_times": 0, | |
"negative_click_times" : 0, | |
"positive_click_times": 0, | |
"mask_save": False, | |
"multi_mask": { | |
"mask_names": [], | |
"masks": [] | |
}, | |
"track_end_number": None, | |
} | |
) | |
image_state = gr.State( | |
{ | |
"user_name": "", | |
"image_name": "", | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"inpaint_masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 30 | |
} | |
) | |
with gr.Group(elem_classes="gr-monochrome-group", visible=True): | |
with gr.Row(): | |
with gr.Accordion('MatAnyone Settings (click to expand)', open=False): | |
with gr.Row(): | |
erode_kernel_size = gr.Slider(label='Erode Kernel Size', | |
minimum=0, | |
maximum=30, | |
step=1, | |
value=10, | |
info="Erosion on the added mask", | |
interactive=True) | |
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size', | |
minimum=0, | |
maximum=30, | |
step=1, | |
value=10, | |
info="Dilation on the added mask", | |
interactive=True) | |
with gr.Row(): | |
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Num of Refinement Iterations", info="More iterations → More details & More time", visible=False) | |
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False) | |
with gr.Row(): | |
point_prompt = gr.Radio( | |
choices=["Positive", "Negative"], | |
value="Positive", | |
label="Point Prompt", | |
info="Click to add positive or negative point for target mask", | |
interactive=True, | |
visible=False, | |
min_width=100, | |
scale=1) | |
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False) | |
with gr.Column(): | |
# input image | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
gr.Markdown("## Step1: Upload image") | |
with gr.Column(scale=2): | |
step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
image_input = gr.Image(label="Input Image", elem_classes="image") | |
extract_frames_button = gr.Button(value="Load Image", interactive=True, elem_classes="new_button") | |
with gr.Column(scale=2): | |
image_info = gr.Textbox(label="Image Info", visible=False) | |
template_frame = gr.Image(type="pil", label="Start Frame", interactive=True, elem_id="template_frame", visible=False, elem_classes="image") | |
with gr.Row(equal_height=True, elem_classes="mask_button_group"): | |
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, elem_classes="new_button", min_width=100) | |
add_mask_button = gr.Button(value="Add Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) | |
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100) | |
matting_button = gr.Button(value="Image Matting", interactive=True, visible=False, elem_classes="green_button", min_width=100) | |
# output image | |
with gr.Row(equal_height=True): | |
foreground_image_output = gr.Image(type="pil", label="Foreground Output", visible=False, elem_classes="image") | |
with gr.Row(): | |
with gr.Row(): | |
export_image_btn = gr.Button(value="Add to current Reference Images", visible=False, elem_classes="new_button") | |
with gr.Column(scale=2, visible= False): | |
alpha_image_output = gr.Image(type="pil", label="Alpha Output", visible=False, elem_classes="image") | |
alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button") | |
export_image_btn.click( fn=export_image, inputs= [vace_image_refs, foreground_image_output], outputs= [vace_image_refs]).then( #video_prompt_video_guide_trigger, | |
fn=teleport_to_video_tab, inputs= [], outputs= [tabs]) | |
# first step: get the image information | |
extract_frames_button.click( | |
fn=get_frames_from_image, | |
inputs=[ | |
image_input, image_state | |
], | |
outputs=[image_state, image_info, template_frame, | |
image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, add_mask_button, matting_button, template_frame, | |
foreground_image_output, alpha_image_output, export_image_btn, alpha_output_button, mask_dropdown, step2_title] | |
) | |
# second step: select images from slider | |
image_selection_slider.release(fn=select_image_template, | |
inputs=[image_selection_slider, image_state, interactive_state], | |
outputs=[template_frame, image_state, interactive_state], api_name="select_image") | |
track_pause_number_slider.release(fn=get_end_number, | |
inputs=[track_pause_number_slider, image_state, interactive_state], | |
outputs=[template_frame, interactive_state], api_name="end_image") | |
# click select image to get mask using sam | |
template_frame.select( | |
fn=sam_refine, | |
inputs=[image_state, point_prompt, click_state, interactive_state], | |
outputs=[template_frame, image_state, interactive_state] | |
) | |
# add different mask | |
add_mask_button.click( | |
fn=add_multi_mask, | |
inputs=[image_state, interactive_state, mask_dropdown], | |
outputs=[interactive_state, mask_dropdown, template_frame, click_state] | |
) | |
remove_mask_button.click( | |
fn=remove_multi_mask, | |
inputs=[interactive_state, mask_dropdown], | |
outputs=[interactive_state, mask_dropdown] | |
) | |
# image matting | |
matting_button.click( | |
fn=image_matting, | |
inputs=[image_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, image_selection_slider], | |
outputs=[foreground_image_output, export_image_btn] | |
) | |