Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
import numpy as np | |
import torch | |
from einops import rearrange | |
from PIL import Image | |
import cv2 | |
def convert_to_numpy(image): | |
if isinstance(image, Image.Image): | |
image = np.array(image) | |
elif isinstance(image, torch.Tensor): | |
image = image.detach().cpu().numpy() | |
elif isinstance(image, np.ndarray): | |
image = image.copy() | |
else: | |
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.' | |
return image | |
def resize_image(input_image, resolution): | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize( | |
input_image, (W, H), | |
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
return img, k | |
def resize_image_ori(h, w, image, k): | |
img = cv2.resize( | |
image, (w, h), | |
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
return img | |
class DepthAnnotator: | |
def __init__(self, cfg, device=None): | |
from .api import MiDaSInference | |
pretrained_model = cfg['PRETRAINED_MODEL'] | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device | |
self.model = MiDaSInference(model_type='dpt_hybrid', model_path=pretrained_model).to(self.device) | |
self.a = cfg.get('A', np.pi * 2.0) | |
self.bg_th = cfg.get('BG_TH', 0.1) | |
def forward(self, image): | |
image = convert_to_numpy(image) | |
image_depth = image | |
h, w, c = image.shape | |
image_depth, k = resize_image(image_depth, | |
1024 if min(h, w) > 1024 else min(h, w)) | |
image_depth = torch.from_numpy(image_depth).float().to(self.device) | |
image_depth = image_depth / 127.5 - 1.0 | |
image_depth = rearrange(image_depth, 'h w c -> 1 c h w') | |
depth = self.model(image_depth)[0] | |
depth_pt = depth.clone() | |
depth_pt -= torch.min(depth_pt) | |
depth_pt /= torch.max(depth_pt) | |
depth_pt = depth_pt.cpu().numpy() | |
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) | |
depth_image = depth_image[..., None].repeat(3, 2) | |
depth_image = resize_image_ori(h, w, depth_image, k) | |
return depth_image | |
class DepthVideoAnnotator(DepthAnnotator): | |
def forward(self, frames): | |
ret_frames = [] | |
for frame in frames: | |
anno_frame = super().forward(np.array(frame)) | |
ret_frames.append(anno_frame) | |
return ret_frames |