Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Copyright (c) Alibaba, Inc. and its affiliates. | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from PIL import Image | |
norm_layer = nn.InstanceNorm2d | |
def convert_to_torch(image): | |
if isinstance(image, Image.Image): | |
image = torch.from_numpy(np.array(image)).float() | |
elif isinstance(image, torch.Tensor): | |
image = image.clone() | |
elif isinstance(image, np.ndarray): | |
image = torch.from_numpy(image.copy()).float() | |
else: | |
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.' | |
return image | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_features): | |
super(ResidualBlock, self).__init__() | |
conv_block = [ | |
nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features), | |
nn.ReLU(inplace=True), | |
nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features) | |
] | |
self.conv_block = nn.Sequential(*conv_block) | |
def forward(self, x): | |
return x + self.conv_block(x) | |
class ContourInference(nn.Module): | |
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): | |
super(ContourInference, self).__init__() | |
# Initial convolution block | |
model0 = [ | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, 64, 7), | |
norm_layer(64), | |
nn.ReLU(inplace=True) | |
] | |
self.model0 = nn.Sequential(*model0) | |
# Downsampling | |
model1 = [] | |
in_features = 64 | |
out_features = in_features * 2 | |
for _ in range(2): | |
model1 += [ | |
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) | |
] | |
in_features = out_features | |
out_features = in_features * 2 | |
self.model1 = nn.Sequential(*model1) | |
model2 = [] | |
# Residual blocks | |
for _ in range(n_residual_blocks): | |
model2 += [ResidualBlock(in_features)] | |
self.model2 = nn.Sequential(*model2) | |
# Upsampling | |
model3 = [] | |
out_features = in_features // 2 | |
for _ in range(2): | |
model3 += [ | |
nn.ConvTranspose2d(in_features, | |
out_features, | |
3, | |
stride=2, | |
padding=1, | |
output_padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) | |
] | |
in_features = out_features | |
out_features = in_features // 2 | |
self.model3 = nn.Sequential(*model3) | |
# Output layer | |
model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)] | |
if sigmoid: | |
model4 += [nn.Sigmoid()] | |
self.model4 = nn.Sequential(*model4) | |
def forward(self, x, cond=None): | |
out = self.model0(x) | |
out = self.model1(out) | |
out = self.model2(out) | |
out = self.model3(out) | |
out = self.model4(out) | |
return out | |
class ScribbleAnnotator: | |
def __init__(self, cfg, device=None): | |
input_nc = cfg.get('INPUT_NC', 3) | |
output_nc = cfg.get('OUTPUT_NC', 1) | |
n_residual_blocks = cfg.get('N_RESIDUAL_BLOCKS', 3) | |
sigmoid = cfg.get('SIGMOID', True) | |
pretrained_model = cfg['PRETRAINED_MODEL'] | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device | |
self.model = ContourInference(input_nc, output_nc, n_residual_blocks, | |
sigmoid) | |
self.model.load_state_dict(torch.load(pretrained_model, weights_only=True)) | |
self.model = self.model.eval().requires_grad_(False).to(self.device) | |
def forward(self, image): | |
is_batch = False if len(image.shape) == 3 else True | |
image = convert_to_torch(image) | |
if len(image.shape) == 3: | |
image = rearrange(image, 'h w c -> 1 c h w') | |
image = image.float().div(255).to(self.device) | |
contour_map = self.model(image) | |
contour_map = (contour_map.squeeze(dim=1) * 255.0).clip( | |
0, 255).cpu().numpy().astype(np.uint8) | |
contour_map = contour_map[..., None].repeat(3, -1) | |
if not is_batch: | |
contour_map = contour_map.squeeze() | |
return contour_map | |
class ScribbleVideoAnnotator(ScribbleAnnotator): | |
def forward(self, frames): | |
ret_frames = [] | |
for frame in frames: | |
anno_frame = super().forward(np.array(frame)) | |
ret_frames.append(anno_frame) | |
return ret_frames |