Spaces:
Running
Running
import math | |
import os | |
from typing import List | |
from typing import Optional | |
from typing import Tuple | |
from typing import Union | |
import logging | |
import numpy as np | |
import torch | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.video_processor import VideoProcessor | |
from tqdm import tqdm | |
from .modules.model import WanModel | |
from .modules.t5 import T5EncoderModel | |
from .modules.vae import WanVAE | |
from wan.modules.posemb_layers import get_rotary_pos_embed | |
from wan.utils.utils import calculate_new_dimensions | |
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler, | |
get_sampling_sigmas, retrieve_timesteps) | |
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
class DTT2V: | |
def __init__( | |
self, | |
config, | |
checkpoint_dir, | |
rank=0, | |
model_filename = None, | |
model_type = None, | |
base_model_type = None, | |
save_quantized = False, | |
text_encoder_filename = None, | |
quantizeTransformer = False, | |
dtype = torch.bfloat16, | |
VAE_dtype = torch.float32, | |
mixed_precision_transformer = False, | |
): | |
self.device = torch.device(f"cuda") | |
self.config = config | |
self.rank = rank | |
self.dtype = dtype | |
self.num_train_timesteps = config.num_train_timesteps | |
self.param_dtype = config.param_dtype | |
self.text_encoder = T5EncoderModel( | |
text_len=config.text_len, | |
dtype=config.t5_dtype, | |
device=torch.device('cpu'), | |
checkpoint_path=text_encoder_filename, | |
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), | |
shard_fn= None) | |
self.vae_stride = config.vae_stride | |
self.patch_size = config.patch_size | |
self.vae = WanVAE( | |
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype= VAE_dtype, | |
device=self.device) | |
logging.info(f"Creating WanModel from {model_filename[-1]}") | |
from mmgp import offload | |
# model_filename = "model.safetensors" | |
# model_filename = "c:/temp/diffusion_pytorch_model-00001-of-00006.safetensors" | |
base_config_file = f"configs/{base_model_type}.json" | |
forcedConfigPath = base_config_file if len(model_filename) > 1 else None | |
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False , forcedConfigPath=forcedConfigPath) | |
# offload.load_model_data(self.model, "recam.ckpt") | |
# self.model.cpu() | |
# dtype = torch.float16 | |
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype) | |
offload.change_dtype(self.model, dtype, True) | |
# offload.save_model(self.model, "sky_reels2_diffusion_forcing_1.3B_mbf16.safetensors", config_file_path="config.json") | |
# offload.save_model(self.model, "sky_reels2_diffusion_forcing_720p_14B_quanto_mbf16_int8.safetensors", do_quantize= True, config_file_path="c:/temp/config _df720.json") | |
# offload.save_model(self.model, "rtfp16_int8.safetensors", do_quantize= "config.json") | |
self.model.eval().requires_grad_(False) | |
if save_quantized: | |
from wgp import save_quantized_model | |
save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file) | |
self.scheduler = FlowUniPCMultistepScheduler() | |
def do_classifier_free_guidance(self) -> bool: | |
return self._guidance_scale > 1 | |
def encode_image( | |
self, image_start: PipelineImageInput, height: int, width: int, num_frames: int, tile_size = 0, causal_block_size = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
# prefix_video | |
prefix_video = np.array(image_start.resize((width, height))).transpose(2, 0, 1) | |
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1) | |
if prefix_video.dtype == torch.uint8: | |
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0 | |
prefix_video = prefix_video.to(self.device) | |
prefix_video = [self.vae.encode(prefix_video.unsqueeze(0), tile_size = tile_size)[0]] # [(c, f, h, w)] | |
if prefix_video[0].shape[1] % causal_block_size != 0: | |
truncate_len = prefix_video[0].shape[1] % causal_block_size | |
print("the length of prefix video is truncated for the casual block size alignment.") | |
prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len] | |
predix_video_latent_length = prefix_video[0].shape[1] | |
return prefix_video, predix_video_latent_length | |
def prepare_latents( | |
self, | |
shape: Tuple[int], | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
) -> torch.Tensor: | |
return randn_tensor(shape, generator, device=device, dtype=dtype) | |
def generate_timestep_matrix( | |
self, | |
num_frames, | |
step_template, | |
base_num_frames, | |
ar_step=5, | |
num_pre_ready=0, | |
casual_block_size=1, | |
shrink_interval_with_mask=False, | |
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]: | |
step_matrix, step_index = [], [] | |
update_mask, valid_interval = [], [] | |
num_iterations = len(step_template) + 1 | |
num_frames_block = num_frames // casual_block_size | |
base_num_frames_block = base_num_frames // casual_block_size | |
if base_num_frames_block < num_frames_block: | |
infer_step_num = len(step_template) | |
gen_block = base_num_frames_block | |
min_ar_step = infer_step_num / gen_block | |
assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting" | |
# print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block) | |
step_template = torch.cat( | |
[ | |
torch.tensor([999], dtype=torch.int64, device=step_template.device), | |
step_template.long(), | |
torch.tensor([0], dtype=torch.int64, device=step_template.device), | |
] | |
) # to handle the counter in row works starting from 1 | |
pre_row = torch.zeros(num_frames_block, dtype=torch.long) | |
if num_pre_ready > 0: | |
pre_row[: num_pre_ready // casual_block_size] = num_iterations | |
while torch.all(pre_row >= (num_iterations - 1)) == False: | |
new_row = torch.zeros(num_frames_block, dtype=torch.long) | |
for i in range(num_frames_block): | |
if i == 0 or pre_row[i - 1] >= ( | |
num_iterations - 1 | |
): # the first frame or the last frame is completely denoised | |
new_row[i] = pre_row[i] + 1 | |
else: | |
new_row[i] = new_row[i - 1] - ar_step | |
new_row = new_row.clamp(0, num_iterations) | |
update_mask.append( | |
(new_row != pre_row) & (new_row != num_iterations) | |
) # False: no need to update, True: need to update | |
step_index.append(new_row) | |
step_matrix.append(step_template[new_row]) | |
pre_row = new_row | |
# for long video we split into several sequences, base_num_frames is set to the model max length (for training) | |
terminal_flag = base_num_frames_block | |
if shrink_interval_with_mask: | |
idx_sequence = torch.arange(num_frames_block, dtype=torch.int64) | |
update_mask = update_mask[0] | |
update_mask_idx = idx_sequence[update_mask] | |
last_update_idx = update_mask_idx[-1].item() | |
terminal_flag = last_update_idx + 1 | |
# for i in range(0, len(update_mask)): | |
for curr_mask in update_mask: | |
if terminal_flag < num_frames_block and curr_mask[terminal_flag]: | |
terminal_flag += 1 | |
valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag)) | |
step_update_mask = torch.stack(update_mask, dim=0) | |
step_index = torch.stack(step_index, dim=0) | |
step_matrix = torch.stack(step_matrix, dim=0) | |
if casual_block_size > 1: | |
step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() | |
step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() | |
step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() | |
valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval] | |
return step_matrix, step_index, step_update_mask, valid_interval | |
def generate( | |
self, | |
input_prompt: Union[str, List[str]], | |
n_prompt: Union[str, List[str]] = "", | |
image_start: PipelineImageInput = None, | |
input_video = None, | |
height: int = 480, | |
width: int = 832, | |
fit_into_canvas = True, | |
frame_num: int = 97, | |
sampling_steps: int = 50, | |
shift: float = 1.0, | |
guide_scale: float = 5.0, | |
seed: float = 0.0, | |
overlap_noise: int = 0, | |
ar_step: int = 5, | |
causal_block_size: int = 5, | |
causal_attention: bool = True, | |
fps: int = 24, | |
VAE_tile_size = 0, | |
joint_pass = False, | |
slg_layers = None, | |
slg_start = 0.0, | |
slg_end = 1.0, | |
callback = None, | |
**bbargs | |
): | |
self._interrupt = False | |
generator = torch.Generator(device=self.device) | |
generator.manual_seed(seed) | |
self._guidance_scale = guide_scale | |
frame_num = max(17, frame_num) # must match causal_block_size for value of 5 | |
frame_num = int( round( (frame_num - 17) / 20)* 20 + 17 ) | |
if ar_step == 0: | |
causal_block_size = 1 | |
causal_attention = False | |
i2v_extra_kwrags = {} | |
prefix_video = None | |
predix_video_latent_length = 0 | |
if input_video != None: | |
_ , _ , height, width = input_video.shape | |
elif image_start != None: | |
image_start = image_start | |
frame_width, frame_height = image_start.size | |
height, width = calculate_new_dimensions(height, width, frame_height, frame_width, fit_into_canvas) | |
image_start = np.array(image_start.resize((width, height))).transpose(2, 0, 1) | |
latent_length = (frame_num - 1) // 4 + 1 | |
latent_height = height // 8 | |
latent_width = width // 8 | |
if self._interrupt: | |
return None | |
prompt_embeds = self.text_encoder([input_prompt], self.device)[0] | |
prompt_embeds = prompt_embeds.to(self.dtype).to(self.device) | |
if self.do_classifier_free_guidance: | |
negative_prompt_embeds = self.text_encoder([n_prompt], self.device)[0] | |
negative_prompt_embeds = negative_prompt_embeds.to(self.dtype).to(self.device) | |
if self._interrupt: | |
return None | |
self.scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift) | |
init_timesteps = self.scheduler.timesteps | |
fps_embeds = [fps] #* prompt_embeds[0].shape[0] | |
fps_embeds = [0 if i == 16 else 1 for i in fps_embeds] | |
output_video = input_video | |
if image_start is not None or output_video is not None: # i !=0 | |
if output_video is not None: | |
prefix_video = output_video.to(self.device) | |
else: | |
causal_block_size = 1 | |
causal_attention = False | |
ar_step = 0 | |
prefix_video = image_start | |
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1) | |
if prefix_video.dtype == torch.uint8: | |
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0 | |
prefix_video = prefix_video.to(self.device) | |
prefix_video = self.vae.encode(prefix_video.unsqueeze(0))[0] # [(c, f, h, w)] | |
predix_video_latent_length = prefix_video.shape[1] | |
truncate_len = predix_video_latent_length % causal_block_size | |
if truncate_len != 0: | |
if truncate_len == predix_video_latent_length: | |
causal_block_size = 1 | |
causal_attention = False | |
ar_step = 0 | |
else: | |
print("the length of prefix video is truncated for the casual block size alignment.") | |
predix_video_latent_length -= truncate_len | |
prefix_video = prefix_video[:, : predix_video_latent_length] | |
base_num_frames_iter = latent_length | |
latent_shape = [16, base_num_frames_iter, latent_height, latent_width] | |
latents = self.prepare_latents( | |
latent_shape, dtype=torch.float32, device=self.device, generator=generator | |
) | |
if prefix_video is not None: | |
latents[:, :predix_video_latent_length] = prefix_video.to(torch.float32) | |
step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix( | |
base_num_frames_iter, | |
init_timesteps, | |
base_num_frames_iter, | |
ar_step, | |
predix_video_latent_length, | |
causal_block_size, | |
) | |
sample_schedulers = [] | |
for _ in range(base_num_frames_iter): | |
sample_scheduler = FlowUniPCMultistepScheduler( | |
num_train_timesteps=1000, shift=1, use_dynamic_shifting=False | |
) | |
sample_scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift) | |
sample_schedulers.append(sample_scheduler) | |
sample_schedulers_counter = [0] * base_num_frames_iter | |
updated_num_steps= len(step_matrix) | |
if callback != None: | |
callback(-1, None, True, override_num_inference_steps = updated_num_steps) | |
if self.model.enable_cache: | |
x_count = 2 if self.do_classifier_free_guidance else 1 | |
self.model.previous_residual = [None] * x_count | |
time_steps_comb = [] | |
self.model.num_steps = updated_num_steps | |
for i, timestep_i in enumerate(step_matrix): | |
valid_interval_start, valid_interval_end = valid_interval[i] | |
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone() | |
if overlap_noise > 0 and valid_interval_start < predix_video_latent_length: | |
timestep[:, valid_interval_start:predix_video_latent_length] = overlap_noise | |
time_steps_comb.append(timestep) | |
self.model.compute_teacache_threshold(self.model.cache_start_step, time_steps_comb, self.model.teacache_multiplier) | |
del time_steps_comb | |
from mmgp import offload | |
freqs = get_rotary_pos_embed(latents.shape[1 :], enable_RIFLEx= False) | |
kwrags = { | |
"freqs" :freqs, | |
"fps" : fps_embeds, | |
"causal_block_size" : causal_block_size, | |
"causal_attention" : causal_attention, | |
"callback" : callback, | |
"pipeline" : self, | |
} | |
kwrags.update(i2v_extra_kwrags) | |
for i, timestep_i in enumerate(tqdm(step_matrix)): | |
kwrags["slg_layers"] = slg_layers if int(slg_start * updated_num_steps) <= i < int(slg_end * updated_num_steps) else None | |
offload.set_step_no_for_lora(self.model, i) | |
update_mask_i = step_update_mask[i] | |
valid_interval_start, valid_interval_end = valid_interval[i] | |
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone() | |
latent_model_input = latents[:, valid_interval_start:valid_interval_end, :, :].clone() | |
if overlap_noise > 0 and valid_interval_start < predix_video_latent_length: | |
noise_factor = 0.001 * overlap_noise | |
timestep_for_noised_condition = overlap_noise | |
latent_model_input[:, valid_interval_start:predix_video_latent_length] = ( | |
latent_model_input[:, valid_interval_start:predix_video_latent_length] | |
* (1.0 - noise_factor) | |
+ torch.randn_like( | |
latent_model_input[:, valid_interval_start:predix_video_latent_length] | |
) | |
* noise_factor | |
) | |
timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition | |
kwrags.update({ | |
"t" : timestep, | |
"current_step" : i, | |
}) | |
# with torch.autocast(device_type="cuda"): | |
if True: | |
if not self.do_classifier_free_guidance: | |
noise_pred = self.model( | |
x=[latent_model_input], | |
context=[prompt_embeds], | |
**kwrags, | |
)[0] | |
if self._interrupt: | |
return None | |
noise_pred= noise_pred.to(torch.float32) | |
else: | |
if joint_pass: | |
noise_pred_cond, noise_pred_uncond = self.model( | |
x=[latent_model_input, latent_model_input], | |
context= [prompt_embeds, negative_prompt_embeds], | |
**kwrags, | |
) | |
if self._interrupt: | |
return None | |
else: | |
noise_pred_cond = self.model( | |
x=[latent_model_input], | |
x_id=0, | |
context=[prompt_embeds], | |
**kwrags, | |
)[0] | |
if self._interrupt: | |
return None | |
noise_pred_uncond = self.model( | |
x=[latent_model_input], | |
x_id=1, | |
context=[negative_prompt_embeds], | |
**kwrags, | |
)[0] | |
if self._interrupt: | |
return None | |
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond) | |
del noise_pred_cond, noise_pred_uncond | |
for idx in range(valid_interval_start, valid_interval_end): | |
if update_mask_i[idx].item(): | |
latents[:, idx] = sample_schedulers[idx].step( | |
noise_pred[:, idx - valid_interval_start], | |
timestep_i[idx], | |
latents[:, idx], | |
return_dict=False, | |
generator=generator, | |
)[0] | |
sample_schedulers_counter[idx] += 1 | |
if callback is not None: | |
callback(i, latents.squeeze(0), False) | |
x0 = latents.unsqueeze(0) | |
videos = [self.vae.decode(x0, tile_size= VAE_tile_size)[0]] | |
output_video = videos[0].clamp(-1, 1).cpu() # c, f, h, w | |
return output_video | |