Spaces:
Running
Running
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import gc | |
import logging | |
import math | |
import os | |
import random | |
import sys | |
import types | |
from contextlib import contextmanager | |
from functools import partial | |
import json | |
import numpy as np | |
import torch | |
import torch.cuda.amp as amp | |
import torch.distributed as dist | |
import torchvision.transforms.functional as TF | |
from tqdm import tqdm | |
from .distributed.fsdp import shard_model | |
from .modules.clip import CLIPModel | |
from .modules.model import WanModel | |
from .modules.t5 import T5EncoderModel | |
from .modules.vae import WanVAE | |
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler, | |
get_sampling_sigmas, retrieve_timesteps) | |
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler | |
from wan.modules.posemb_layers import get_rotary_pos_embed | |
from wan.utils.utils import resize_lanczos, calculate_new_dimensions | |
def optimized_scale(positive_flat, negative_flat): | |
# Calculate dot production | |
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) | |
# Squared norm of uncondition | |
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 | |
# st_star = v_cond^T * v_uncond / ||v_uncond||^2 | |
st_star = dot_product / squared_norm | |
return st_star | |
class WanI2V: | |
def __init__( | |
self, | |
config, | |
checkpoint_dir, | |
model_filename = None, | |
model_type = None, | |
base_model_type= None, | |
text_encoder_filename= None, | |
quantizeTransformer = False, | |
dtype = torch.bfloat16, | |
VAE_dtype = torch.float32, | |
save_quantized = False, | |
mixed_precision_transformer = False | |
): | |
self.device = torch.device(f"cuda") | |
self.config = config | |
self.dtype = dtype | |
self.VAE_dtype = VAE_dtype | |
self.num_train_timesteps = config.num_train_timesteps | |
self.param_dtype = config.param_dtype | |
# shard_fn = partial(shard_model, device_id=device_id) | |
self.text_encoder = T5EncoderModel( | |
text_len=config.text_len, | |
dtype=config.t5_dtype, | |
device=torch.device('cpu'), | |
checkpoint_path=text_encoder_filename, | |
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), | |
shard_fn=None, | |
) | |
self.vae_stride = config.vae_stride | |
self.patch_size = config.patch_size | |
self.vae = WanVAE( | |
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype = VAE_dtype, | |
device=self.device) | |
self.clip = CLIPModel( | |
dtype=config.clip_dtype, | |
device=self.device, | |
checkpoint_path=os.path.join(checkpoint_dir , | |
config.clip_checkpoint), | |
tokenizer_path=os.path.join(checkpoint_dir , config.clip_tokenizer)) | |
logging.info(f"Creating WanModel from {model_filename[-1]}") | |
from mmgp import offload | |
# fantasy = torch.load("c:/temp/fantasy.ckpt") | |
# proj_model = fantasy["proj_model"] | |
# audio_processor = fantasy["audio_processor"] | |
# offload.safetensors2.torch_write_file(proj_model, "proj_model.safetensors") | |
# offload.safetensors2.torch_write_file(audio_processor, "audio_processor.safetensors") | |
# for k,v in audio_processor.items(): | |
# audio_processor[k] = v.to(torch.bfloat16) | |
# with open("fantasy_config.json", "r", encoding="utf-8") as reader: | |
# config_text = reader.read() | |
# config_json = json.loads(config_text) | |
# offload.safetensors2.torch_write_file(audio_processor, "audio_processor_bf16.safetensors", config=config_json) | |
# model_filename = [model_filename, "audio_processor_bf16.safetensors"] | |
# model_filename = "c:/temp/i2v480p/diffusion_pytorch_model-00001-of-00007.safetensors" | |
# dtype = torch.float16 | |
base_config_file = f"configs/{base_model_type}.json" | |
forcedConfigPath = base_config_file if len(model_filename) > 1 else None | |
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath= base_config_file, forcedConfigPath= forcedConfigPath) | |
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype) | |
offload.change_dtype(self.model, dtype, True) | |
# offload.save_model(self.model, "wan2.1_image2video_720p_14B_mbf16.safetensors", config_file_path="c:/temp/i2v720p/config.json") | |
# offload.save_model(self.model, "wan2.1_image2video_720p_14B_quanto_mbf16_int8.safetensors",do_quantize=True, config_file_path="c:/temp/i2v720p/config.json") | |
# offload.save_model(self.model, "wan2.1_image2video_720p_14B_quanto_mfp16_int8.safetensors",do_quantize=True, config_file_path="c:/temp/i2v720p/config.json") | |
# offload.save_model(self.model, "wan2.1_Fun_InP_1.3B_bf16_bis.safetensors") | |
self.model.eval().requires_grad_(False) | |
if save_quantized: | |
from wgp import save_quantized_model | |
save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file) | |
self.sample_neg_prompt = config.sample_neg_prompt | |
def generate(self, | |
input_prompt, | |
image_start, | |
image_end = None, | |
height =720, | |
width = 1280, | |
fit_into_canvas = True, | |
frame_num=81, | |
shift=5.0, | |
sample_solver='unipc', | |
sampling_steps=40, | |
guide_scale=5.0, | |
n_prompt="", | |
seed=-1, | |
callback = None, | |
enable_RIFLEx = False, | |
VAE_tile_size= 0, | |
joint_pass = False, | |
slg_layers = None, | |
slg_start = 0.0, | |
slg_end = 1.0, | |
cfg_star_switch = True, | |
cfg_zero_step = 5, | |
audio_scale=None, | |
audio_cfg_scale=None, | |
audio_proj=None, | |
audio_context_lens=None, | |
model_filename = None, | |
**bbargs | |
): | |
r""" | |
Generates video frames from input image and text prompt using diffusion process. | |
Args: | |
input_prompt (`str`): | |
Text prompt for content generation. | |
image_start (PIL.Image.Image): | |
Input image tensor. Shape: [3, H, W] | |
max_area (`int`, *optional*, defaults to 720*1280): | |
Maximum pixel area for latent space calculation. Controls video resolution scaling | |
frame_num (`int`, *optional*, defaults to 81): | |
How many frames to sample from a video. The number should be 4n+1 | |
shift (`float`, *optional*, defaults to 5.0): | |
Noise schedule shift parameter. Affects temporal dynamics | |
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0. | |
sample_solver (`str`, *optional*, defaults to 'unipc'): | |
Solver used to sample the video. | |
sampling_steps (`int`, *optional*, defaults to 40): | |
Number of diffusion sampling steps. Higher values improve quality but slow generation | |
guide_scale (`float`, *optional*, defaults 5.0): | |
Classifier-free guidance scale. Controls prompt adherence vs. creativity | |
n_prompt (`str`, *optional*, defaults to ""): | |
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` | |
seed (`int`, *optional*, defaults to -1): | |
Random seed for noise generation. If -1, use random seed | |
offload_model (`bool`, *optional*, defaults to True): | |
If True, offloads models to CPU during generation to save VRAM | |
Returns: | |
torch.Tensor: | |
Generated video frames tensor. Dimensions: (C, N H, W) where: | |
- C: Color channels (3 for RGB) | |
- N: Number of frames (81) | |
- H: Frame height (from max_area) | |
- W: Frame width from max_area) | |
""" | |
add_frames_for_end_image = "image2video" in model_filename or "fantasy" in model_filename | |
image_start = TF.to_tensor(image_start) | |
lat_frames = int((frame_num - 1) // self.vae_stride[0] + 1) | |
any_end_frame = image_end !=None | |
if any_end_frame: | |
any_end_frame = True | |
image_end = TF.to_tensor(image_end) | |
if add_frames_for_end_image: | |
frame_num +=1 | |
lat_frames = int((frame_num - 2) // self.vae_stride[0] + 2) | |
h, w = image_start.shape[1:] | |
h, w = calculate_new_dimensions(height, width, h, w, fit_into_canvas) | |
lat_h = round( | |
h // self.vae_stride[1] // | |
self.patch_size[1] * self.patch_size[1]) | |
lat_w = round( | |
w // self.vae_stride[2] // | |
self.patch_size[2] * self.patch_size[2]) | |
h = lat_h * self.vae_stride[1] | |
w = lat_w * self.vae_stride[2] | |
clip_image_size = self.clip.model.image_size | |
img_interpolated = resize_lanczos(image_start, h, w).sub_(0.5).div_(0.5).unsqueeze(0).transpose(0,1).to(self.device) #, self.dtype | |
image_start = resize_lanczos(image_start, clip_image_size, clip_image_size) | |
image_start = image_start.sub_(0.5).div_(0.5).to(self.device) #, self.dtype | |
if image_end!= None: | |
img_interpolated2 = resize_lanczos(image_end, h, w).sub_(0.5).div_(0.5).unsqueeze(0).transpose(0,1).to(self.device) #, self.dtype | |
image_end = resize_lanczos(image_end, clip_image_size, clip_image_size) | |
image_end = image_end.sub_(0.5).div_(0.5).to(self.device) #, self.dtype | |
max_seq_len = lat_frames * lat_h * lat_w // ( self.patch_size[1] * self.patch_size[2]) | |
seed = seed if seed >= 0 else random.randint(0, sys.maxsize) | |
seed_g = torch.Generator(device=self.device) | |
seed_g.manual_seed(seed) | |
noise = torch.randn(16, lat_frames, lat_h, lat_w, dtype=torch.float32, generator=seed_g, device=self.device) | |
msk = torch.ones(1, frame_num, lat_h, lat_w, device=self.device) | |
if any_end_frame: | |
msk[:, 1: -1] = 0 | |
if add_frames_for_end_image: | |
msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:-1], torch.repeat_interleave(msk[:, -1:], repeats=4, dim=1) ], dim=1) | |
else: | |
msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1) | |
else: | |
msk[:, 1:] = 0 | |
msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1) | |
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w) | |
msk = msk.transpose(1, 2)[0] | |
if n_prompt == "": | |
n_prompt = self.sample_neg_prompt | |
if self._interrupt: | |
return None | |
# preprocess | |
context = self.text_encoder([input_prompt], self.device)[0] | |
context_null = self.text_encoder([n_prompt], self.device)[0] | |
context = context.to(self.dtype) | |
context_null = context_null.to(self.dtype) | |
if self._interrupt: | |
return None | |
clip_context = self.clip.visual([image_start[:, None, :, :]]) | |
from mmgp import offload | |
offload.last_offload_obj.unload_all() | |
if any_end_frame: | |
mean2 = 0 | |
enc= torch.concat([ | |
img_interpolated, | |
torch.full( (3, frame_num-2, h, w), mean2, device=self.device, dtype= self.VAE_dtype), | |
img_interpolated2, | |
], dim=1).to(self.device) | |
else: | |
enc= torch.concat([ | |
img_interpolated, | |
torch.zeros(3, frame_num-1, h, w, device=self.device, dtype= self.VAE_dtype) | |
], dim=1).to(self.device) | |
image_start, image_end, img_interpolated, img_interpolated2 = None, None, None, None | |
lat_y = self.vae.encode([enc], VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0] | |
y = torch.concat([msk, lat_y]) | |
lat_y = None | |
# evaluation mode | |
if sample_solver == 'unipc': | |
sample_scheduler = FlowUniPCMultistepScheduler( | |
num_train_timesteps=self.num_train_timesteps, | |
shift=1, | |
use_dynamic_shifting=False) | |
sample_scheduler.set_timesteps( | |
sampling_steps, device=self.device, shift=shift) | |
timesteps = sample_scheduler.timesteps | |
elif sample_solver == 'dpm++': | |
sample_scheduler = FlowDPMSolverMultistepScheduler( | |
num_train_timesteps=self.num_train_timesteps, | |
shift=1, | |
use_dynamic_shifting=False) | |
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) | |
timesteps, _ = retrieve_timesteps( | |
sample_scheduler, | |
device=self.device, | |
sigmas=sampling_sigmas) | |
else: | |
raise NotImplementedError("Unsupported solver.") | |
# sample videos | |
latent = noise | |
batch_size = 1 | |
freqs = get_rotary_pos_embed(latent.shape[1:], enable_RIFLEx= enable_RIFLEx) | |
kwargs = { 'clip_fea': clip_context, 'y': y, 'freqs' : freqs, 'pipeline' : self, 'callback' : callback } | |
if audio_proj != None: | |
kwargs.update({ | |
"audio_proj": audio_proj.to(self.dtype), | |
"audio_context_lens": audio_context_lens, | |
}) | |
if self.model.enable_cache: | |
self.model.previous_residual = [None] * (3 if audio_cfg_scale !=None else 2) | |
self.model.compute_teacache_threshold(self.model.cache_start_step, timesteps, self.model.teacache_multiplier) | |
# self.model.to(self.device) | |
if callback != None: | |
callback(-1, None, True) | |
latent = latent.to(self.device) | |
for i, t in enumerate(tqdm(timesteps)): | |
offload.set_step_no_for_lora(self.model, i) | |
kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None | |
latent_model_input = latent | |
timestep = [t] | |
timestep = torch.stack(timestep).to(self.device) | |
kwargs.update({ | |
't' :timestep, | |
'current_step' :i, | |
}) | |
if guide_scale == 1: | |
noise_pred = self.model( [latent_model_input], context=[context], audio_scale = None if audio_scale == None else [audio_scale], x_id=0, **kwargs, )[0] | |
if self._interrupt: | |
return None | |
elif joint_pass: | |
if audio_proj == None: | |
noise_pred_cond, noise_pred_uncond = self.model( | |
[latent_model_input, latent_model_input], | |
context=[context, context_null], | |
**kwargs) | |
else: | |
noise_pred_cond, noise_pred_noaudio, noise_pred_uncond = self.model( | |
[latent_model_input, latent_model_input, latent_model_input], | |
context=[context, context, context_null], | |
audio_scale = [audio_scale, None, None ], | |
**kwargs) | |
if self._interrupt: | |
return None | |
else: | |
noise_pred_cond = self.model( [latent_model_input], context=[context], audio_scale = None if audio_scale == None else [audio_scale], x_id=0, **kwargs, )[0] | |
if self._interrupt: | |
return None | |
if audio_proj != None: | |
noise_pred_noaudio = self.model( | |
[latent_model_input], | |
x_id=1, | |
context=[context], | |
**kwargs, | |
)[0] | |
if self._interrupt: | |
return None | |
noise_pred_uncond = self.model( | |
[latent_model_input], | |
x_id=1 if audio_scale == None else 2, | |
context=[context_null], | |
**kwargs, | |
)[0] | |
if self._interrupt: | |
return None | |
del latent_model_input | |
if guide_scale > 1: | |
# CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/ | |
if cfg_star_switch: | |
positive_flat = noise_pred_cond.view(batch_size, -1) | |
negative_flat = noise_pred_uncond.view(batch_size, -1) | |
alpha = optimized_scale(positive_flat,negative_flat) | |
alpha = alpha.view(batch_size, 1, 1, 1) | |
if (i <= cfg_zero_step): | |
noise_pred = noise_pred_cond*0. # it would be faster not to compute noise_pred... | |
else: | |
noise_pred_uncond *= alpha | |
if audio_scale == None: | |
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond) | |
else: | |
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_noaudio - noise_pred_uncond) + audio_cfg_scale * (noise_pred_cond - noise_pred_noaudio) | |
noise_pred_uncond, noise_pred_noaudio = None, None | |
temp_x0 = sample_scheduler.step( | |
noise_pred.unsqueeze(0), | |
t, | |
latent.unsqueeze(0), | |
return_dict=False, | |
generator=seed_g)[0] | |
latent = temp_x0.squeeze(0) | |
del temp_x0 | |
del timestep | |
if callback is not None: | |
callback(i, latent, False) | |
x0 = [latent] | |
video = self.vae.decode(x0, VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0] | |
if any_end_frame and add_frames_for_end_image: | |
# video[:, -1:] = img_interpolated2 | |
video = video[:, :-1] | |
del noise, latent | |
del sample_scheduler | |
return video | |