Spaces:
Running
Running
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import torch | |
from importlib.metadata import version | |
from mmgp import offload | |
import torch.nn.functional as F | |
major, minor = torch.cuda.get_device_capability(None) | |
bfloat16_supported = major >= 8 | |
try: | |
from xformers.ops import memory_efficient_attention | |
except ImportError: | |
memory_efficient_attention = None | |
try: | |
import flash_attn_interface | |
FLASH_ATTN_3_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_3_AVAILABLE = False | |
try: | |
import flash_attn | |
FLASH_ATTN_2_AVAILABLE = True | |
except ModuleNotFoundError: | |
FLASH_ATTN_2_AVAILABLE = False | |
flash_attn = None | |
try: | |
from sageattention import sageattn_varlen | |
def sageattn_varlen_wrapper( | |
q, | |
k, | |
v, | |
cu_seqlens_q, | |
cu_seqlens_kv, | |
max_seqlen_q, | |
max_seqlen_kv, | |
): | |
return sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv) | |
except ImportError: | |
sageattn_varlen_wrapper = None | |
import warnings | |
try: | |
from sageattention import sageattn | |
from .sage2_core import sageattn as alt_sageattn, is_sage2_supported | |
sage2_supported = is_sage2_supported() | |
except ImportError: | |
sageattn = None | |
alt_sageattn = None | |
sage2_supported = False | |
# @torch.compiler.disable() | |
def sageattn_wrapper( | |
qkv_list, | |
attention_length | |
): | |
q,k, v = qkv_list | |
if True: | |
qkv_list = [q,k,v] | |
del q, k ,v | |
o = alt_sageattn(qkv_list, tensor_layout="NHD") | |
else: | |
o = sageattn(q, k, v, tensor_layout="NHD") | |
del q, k ,v | |
qkv_list.clear() | |
return o | |
# try: | |
# if True: | |
# from .sage2_core import sageattn_qk_int8_pv_fp8_window_cuda | |
# @torch.compiler.disable() | |
# def sageattn_window_wrapper( | |
# qkv_list, | |
# attention_length, | |
# window | |
# ): | |
# q,k, v = qkv_list | |
# padding_length = q.shape[0] -attention_length | |
# q = q[:attention_length, :, : ].unsqueeze(0) | |
# k = k[:attention_length, :, : ].unsqueeze(0) | |
# v = v[:attention_length, :, : ].unsqueeze(0) | |
# qkvl_list = [q, k , v] | |
# del q, k ,v | |
# o = sageattn_qk_int8_pv_fp8_window_cuda(qkvl_list, tensor_layout="NHD", window = window).squeeze(0) | |
# qkv_list.clear() | |
# if padding_length > 0: | |
# o = torch.cat([o, torch.empty( (padding_length, *o.shape[-2:]), dtype= o.dtype, device=o.device ) ], 0) | |
# return o | |
# except ImportError: | |
# sageattn = sageattn_qk_int8_pv_fp8_window_cuda | |
def sdpa_wrapper( | |
qkv_list, | |
attention_length, | |
attention_mask = None | |
): | |
q, k, v = qkv_list | |
q = q.transpose(1,2) | |
k = k.transpose(1,2) | |
v = v.transpose(1,2) | |
if attention_mask != None: | |
attention_mask = attention_mask.transpose(1,2) | |
o = F.scaled_dot_product_attention( q, k, v, attn_mask=attention_mask, is_causal=False).transpose(1,2) | |
del q, k ,v | |
qkv_list.clear() | |
return o | |
def get_attention_modes(): | |
ret = ["sdpa", "auto"] | |
if flash_attn != None: | |
ret.append("flash") | |
if memory_efficient_attention != None: | |
ret.append("xformers") | |
if sageattn_varlen_wrapper != None: | |
ret.append("sage") | |
if sageattn != None and version("sageattention").startswith("2") : | |
ret.append("sage2") | |
return ret | |
def get_supported_attention_modes(): | |
ret = get_attention_modes() | |
if not sage2_supported: | |
if "sage2" in ret: | |
ret.remove("sage2") | |
major, minor = torch.cuda.get_device_capability() | |
if major < 7: | |
if "sage" in ret: | |
ret.remove("sage") | |
return ret | |
__all__ = [ | |
'pay_attention', | |
'attention', | |
] | |
def get_cu_seqlens(batch_size, lens, max_len): | |
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda") | |
for i in range(batch_size): | |
s = lens[i] | |
s1 = i * max_len + s | |
s2 = (i + 1) * max_len | |
cu_seqlens[2 * i + 1] = s1 | |
cu_seqlens[2 * i + 2] = s2 | |
return cu_seqlens | |
def pay_attention( | |
qkv_list, | |
dropout_p=0., | |
softmax_scale=None, | |
causal=False, | |
window_size=(-1, -1), | |
deterministic=False, | |
version=None, | |
force_attention= None, | |
attention_mask = None, | |
cross_attn= False, | |
q_lens = None, | |
k_lens = None, | |
): | |
# format : torch.Size([batches, tokens, heads, head_features]) | |
# assume if q_lens is non null, each q is padded up to lq (one q out of two will need to be discarded or ignored) | |
# assume if k_lens is non null, each k is padded up to lk (one k out of two will need to be discarded or ignored) | |
if attention_mask != None: | |
force_attention = "sdpa" | |
if attention_mask.dtype == torch.bfloat16 and not bfloat16_supported: | |
attention_mask = attention_mask.to(torch.float16) | |
attn = offload.shared_state["_attention"] if force_attention== None else force_attention | |
q,k,v = qkv_list | |
qkv_list.clear() | |
out_dtype = q.dtype | |
if q.dtype == torch.bfloat16 and not bfloat16_supported: | |
q = q.to(torch.float16) | |
k = k.to(torch.float16) | |
v = v.to(torch.float16) | |
final_padding = 0 | |
b, lq, lk = q.size(0), q.size(1), k.size(1) | |
q = q.to(v.dtype) | |
k = k.to(v.dtype) | |
if attn == "chipmunk": | |
from src.chipmunk.modules import SparseDiffMlp, SparseDiffAttn | |
from src.chipmunk.util import LayerCounter, GLOBAL_CONFIG | |
if b > 1 and k_lens != None and attn in ("sage2", "sdpa"): | |
assert attention_mask == None | |
# Poor's man var k len attention | |
assert q_lens == None | |
chunk_sizes = [] | |
k_sizes = [] | |
current_size = k_lens[0] | |
current_count= 1 | |
for k_len in k_lens[1:]: | |
if k_len == current_size: | |
current_count += 1 | |
else: | |
chunk_sizes.append(current_count) | |
k_sizes.append(current_size) | |
current_count = 1 | |
current_size = k_len | |
chunk_sizes.append(current_count) | |
k_sizes.append(k_len) | |
if len(chunk_sizes) > 1 or k_lens[0] != k.shape[1]: | |
q_chunks =torch.split(q, chunk_sizes) | |
k_chunks =torch.split(k, chunk_sizes) | |
v_chunks =torch.split(v, chunk_sizes) | |
q, k, v = None, None, None | |
k_chunks = [ u[:, :sz] for u, sz in zip(k_chunks, k_sizes)] | |
v_chunks = [ u[:, :sz] for u, sz in zip(v_chunks, k_sizes)] | |
o = [] | |
for sub_q, sub_k, sub_v in zip(q_chunks, k_chunks, v_chunks): | |
qkv_list = [sub_q, sub_k, sub_v] | |
sub_q, sub_k, sub_v = None, None, None | |
o.append( pay_attention(qkv_list) ) | |
q_chunks, k_chunks, v_chunks = None, None, None | |
o = torch.cat(o, dim = 0) | |
return o | |
elif (q_lens != None or k_lens != None) and attn in ("sage2", "sdpa"): | |
assert b == 1 | |
szq = q_lens[0].item() if q_lens != None else lq | |
szk = k_lens[0].item() if k_lens != None else lk | |
final_padding = lq - szq | |
q = q[:, :szq] | |
k = k[:, :szk] | |
v = v[:, :szk] | |
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: | |
warnings.warn( | |
'Flash attention 3 is not available, use flash attention 2 instead.' | |
) | |
if attn=="sage" or attn=="flash": | |
if b != 1 : | |
if k_lens == None: | |
k_lens = torch.tensor( [lk] * b, dtype=torch.int32).to(device=q.device, non_blocking=True) | |
if q_lens == None: | |
q_lens = torch.tensor([lq] * b, dtype=torch.int32).to(device=q.device, non_blocking=True) | |
k = k.reshape(-1, *k.shape[-2:]) | |
v = v.reshape(-1, *v.shape[-2:]) | |
q = q.reshape(-1, *q.shape[-2:]) | |
cu_seqlens_q=get_cu_seqlens(b, q_lens, lq) | |
cu_seqlens_k=get_cu_seqlens(b, k_lens, lk) | |
else: | |
szq = q_lens[0].item() if q_lens != None else lq | |
szk = k_lens[0].item() if k_lens != None else lk | |
if szq != lq or szk != lk: | |
cu_seqlens_q = torch.tensor([0, szq, lq], dtype=torch.int32, device="cuda") | |
cu_seqlens_k = torch.tensor([0, szk, lk], dtype=torch.int32, device="cuda") | |
else: | |
cu_seqlens_q = torch.tensor([0, lq], dtype=torch.int32, device="cuda") | |
cu_seqlens_k = torch.tensor([0, lk], dtype=torch.int32, device="cuda") | |
q = q.squeeze(0) | |
k = k.squeeze(0) | |
v = v.squeeze(0) | |
# apply attention | |
if attn=="sage": | |
x = sageattn_varlen_wrapper( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q= cu_seqlens_q, | |
cu_seqlens_kv= cu_seqlens_k, | |
max_seqlen_q=lq, | |
max_seqlen_kv=lk, | |
).unflatten(0, (b, lq)) | |
elif attn=="sage2": | |
import math | |
if cross_attn or True: | |
qkv_list = [q,k,v] | |
del q,k,v | |
x = sageattn_wrapper(qkv_list, lq) #.unsqueeze(0) | |
# else: | |
# layer = offload.shared_state["layer"] | |
# embed_sizes = offload.shared_state["embed_sizes"] | |
# current_step = offload.shared_state["step_no"] | |
# max_steps = offload.shared_state["max_steps"] | |
# nb_latents = embed_sizes[0] * embed_sizes[1]* embed_sizes[2] | |
# window = 0 | |
# start_window_step = int(max_steps * 0.3) | |
# start_layer = 10 | |
# end_layer = 30 | |
# if (layer < start_layer or layer > end_layer ) or current_step <start_window_step: | |
# window = 0 | |
# else: | |
# # coef = min((max_steps - current_step)/(max_steps-start_window_step),1)*max(min((25 - layer)/(25-start_layer),1),0) * 0.7 + 0.3 | |
# coef = 0.3 | |
# print(f"step: {current_step}, layer: {layer}, coef:{coef:0.1f}]") | |
# window = math.ceil(coef* nb_latents) | |
# invert_spaces = (layer + current_step) % 2 == 0 and window > 0 | |
# invert_spaces = False | |
# def flip(q): | |
# q = q.reshape(*embed_sizes, *q.shape[-2:]) | |
# q = q.transpose(0,2) | |
# q = q.contiguous() | |
# q = q.transpose(0,2) | |
# q = q.reshape( -1, *q.shape[-2:]) | |
# return q | |
# def flop(q): | |
# q = q.reshape(embed_sizes[2], embed_sizes[1], embed_sizes[0] , *q.shape[-2:]) | |
# q = q.transpose(0,2) | |
# q = q.contiguous() | |
# q = q.transpose(0,2) | |
# q = q.reshape( -1, *q.shape[-2:]) | |
# return q | |
# if invert_spaces: | |
# q = flip(q) | |
# k = flip(k) | |
# v = flip(v) | |
# qkv_list = [q,k,v] | |
# del q,k,v | |
# x = sageattn_window_wrapper(qkv_list, lq, window= window) #.unsqueeze(0) | |
# if invert_spaces: | |
# x = flop(x) | |
# x = x.unsqueeze(0) | |
elif attn=="sdpa": | |
qkv_list = [q, k, v] | |
del q ,k ,v | |
x = sdpa_wrapper( qkv_list, lq, attention_mask = attention_mask) #.unsqueeze(0) | |
elif attn=="flash" and version == 3: | |
# Note: dropout_p, window_size are not supported in FA3 now. | |
x = flash_attn_interface.flash_attn_varlen_func( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q= cu_seqlens_q, | |
cu_seqlens_k= cu_seqlens_k, | |
seqused_q=None, | |
seqused_k=None, | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
deterministic=deterministic)[0].unflatten(0, (b, lq)) | |
elif attn=="flash": | |
x = flash_attn.flash_attn_varlen_func( | |
q=q, | |
k=k, | |
v=v, | |
cu_seqlens_q= cu_seqlens_q, | |
cu_seqlens_k= cu_seqlens_k, | |
max_seqlen_q=lq, | |
max_seqlen_k=lk, | |
dropout_p=dropout_p, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=window_size, | |
deterministic=deterministic).unflatten(0, (b, lq)) | |
# output | |
elif attn=="xformers": | |
from xformers.ops.fmha.attn_bias import BlockDiagonalPaddedKeysMask | |
if k_lens == None and q_lens == None: | |
x = memory_efficient_attention(q, k, v ) | |
elif k_lens != None and q_lens == None: | |
attn_mask = BlockDiagonalPaddedKeysMask.from_seqlens([lq] * b , lk , list(k_lens) ) | |
x = memory_efficient_attention(q, k, v, attn_bias= attn_mask ) | |
elif b == 1: | |
szq = q_lens[0].item() if q_lens != None else lq | |
szk = k_lens[0].item() if k_lens != None else lk | |
attn_mask = BlockDiagonalPaddedKeysMask.from_seqlens([szq, lq - szq ] , lk , [szk, 0] ) | |
x = memory_efficient_attention(q, k, v, attn_bias= attn_mask ) | |
else: | |
assert False | |
x = x.type(out_dtype) | |
if final_padding > 0: | |
x = torch.cat([x, torch.empty( (x.shape[0], final_padding, *x.shape[-2:]), dtype= x.dtype, device=x.device ) ], 1) | |
return x |