Spaces:
Running
Running
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import math | |
from einops import rearrange | |
import torch | |
import torch.cuda.amp as amp | |
import torch.nn as nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
import numpy as np | |
from typing import Union,Optional | |
from mmgp import offload | |
from .attention import pay_attention | |
from torch.backends.cuda import sdp_kernel | |
__all__ = ['WanModel'] | |
def sinusoidal_embedding_1d(dim, position): | |
# preprocess | |
assert dim % 2 == 0 | |
half = dim // 2 | |
position = position.type(torch.float32) | |
# calculation | |
sinusoid = torch.outer( | |
position, torch.pow(10000, -torch.arange(half).to(position).div(half))) | |
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
return x | |
def reshape_latent(latent, latent_frames): | |
if latent_frames == latent.shape[0]: | |
return latent | |
return latent.reshape(latent_frames, -1, latent.shape[-1] ) | |
def identify_k( b: float, d: int, N: int): | |
""" | |
This function identifies the index of the intrinsic frequency component in a RoPE-based pre-trained diffusion transformer. | |
Args: | |
b (`float`): The base frequency for RoPE. | |
d (`int`): Dimension of the frequency tensor | |
N (`int`): the first observed repetition frame in latent space | |
Returns: | |
k (`int`): the index of intrinsic frequency component | |
N_k (`int`): the period of intrinsic frequency component in latent space | |
Example: | |
In HunyuanVideo, b=256 and d=16, the repetition occurs approximately 8s (N=48 in latent space). | |
k, N_k = identify_k(b=256, d=16, N=48) | |
In this case, the intrinsic frequency index k is 4, and the period N_k is 50. | |
""" | |
# Compute the period of each frequency in RoPE according to Eq.(4) | |
periods = [] | |
for j in range(1, d // 2 + 1): | |
theta_j = 1.0 / (b ** (2 * (j - 1) / d)) | |
N_j = round(2 * torch.pi / theta_j) | |
periods.append(N_j) | |
# Identify the intrinsic frequency whose period is closed to N(see Eq.(7)) | |
diffs = [abs(N_j - N) for N_j in periods] | |
k = diffs.index(min(diffs)) + 1 | |
N_k = periods[k-1] | |
return k, N_k | |
def rope_params_riflex(max_seq_len, dim, theta=10000, L_test=30, k=6): | |
assert dim % 2 == 0 | |
exponents = torch.arange(0, dim, 2, dtype=torch.float64).div(dim) | |
inv_theta_pow = 1.0 / torch.pow(theta, exponents) | |
inv_theta_pow[k-1] = 0.9 * 2 * torch.pi / L_test | |
freqs = torch.outer(torch.arange(max_seq_len), inv_theta_pow) | |
if True: | |
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D] | |
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D] | |
return (freqs_cos, freqs_sin) | |
else: | |
freqs = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2] | |
return freqs | |
def relative_l1_distance(last_tensor, current_tensor): | |
l1_distance = torch.abs(last_tensor - current_tensor).mean() | |
norm = torch.abs(last_tensor).mean() | |
relative_l1_distance = l1_distance / norm | |
return relative_l1_distance.to(torch.float32) | |
class WanRMSNorm(nn.Module): | |
def __init__(self, dim, eps=1e-5): | |
super().__init__() | |
self.dim = dim | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, C] | |
""" | |
y = x.float() | |
y.pow_(2) | |
y = y.mean(dim=-1, keepdim=True) | |
y += self.eps | |
y.rsqrt_() | |
x *= y | |
x *= self.weight | |
return x | |
# return self._norm(x).type_as(x) * self.weight | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) | |
def my_LayerNorm(norm, x): | |
y = x.float() | |
y_m = y.mean(dim=-1, keepdim=True) | |
y -= y_m | |
del y_m | |
y.pow_(2) | |
y = y.mean(dim=-1, keepdim=True) | |
y += norm.eps | |
y.rsqrt_() | |
x = x * y | |
return x | |
class WanLayerNorm(nn.LayerNorm): | |
def __init__(self, dim, eps=1e-6, elementwise_affine=False): | |
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps) | |
def forward(self, x): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, C] | |
""" | |
# return F.layer_norm( | |
# input, self.normalized_shape, self.weight, self.bias, self.eps | |
# ) | |
y = super().forward(x) | |
x = y.type_as(x) | |
return x | |
# return super().forward(x).type_as(x) | |
from wan.modules.posemb_layers import apply_rotary_emb | |
class WanSelfAttention(nn.Module): | |
def __init__(self, | |
dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
eps=1e-6, | |
block_no=0): | |
assert dim % num_heads == 0 | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.eps = eps | |
self.block_no = block_no | |
# layers | |
self.q = nn.Linear(dim, dim) | |
self.k = nn.Linear(dim, dim) | |
self.v = nn.Linear(dim, dim) | |
self.o = nn.Linear(dim, dim) | |
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
def forward(self, xlist, grid_sizes, freqs, block_mask = None): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
""" | |
x = xlist[0] | |
xlist.clear() | |
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
# query, key, value function | |
q = self.q(x) | |
self.norm_q(q) | |
q = q.view(b, s, n, d) # !!! | |
k = self.k(x) | |
self.norm_k(k) | |
k = k.view(b, s, n, d) | |
v = self.v(x).view(b, s, n, d) | |
del x | |
qklist = [q,k] | |
del q,k | |
q,k = apply_rotary_emb(qklist, freqs, head_first=False) | |
chipmunk = offload.shared_state.get("_chipmunk", False) | |
if chipmunk and self.__class__ == WanSelfAttention: | |
q = q.transpose(1,2) | |
k = k.transpose(1,2) | |
v = v.transpose(1,2) | |
attn_layers = offload.shared_state["_chipmunk_layers"] | |
x = attn_layers[self.block_no](q, k, v) | |
x = x.transpose(1,2) | |
elif block_mask == None: | |
qkv_list = [q,k,v] | |
del q,k,v | |
x = pay_attention( | |
qkv_list, | |
window_size=self.window_size) | |
else: | |
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): | |
x = ( | |
torch.nn.functional.scaled_dot_product_attention( | |
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), attn_mask=block_mask | |
) | |
.transpose(1, 2) | |
.contiguous() | |
) | |
del q,k,v | |
# if not self._flag_ar_attention: | |
# q = rope_apply(q, grid_sizes, freqs) | |
# k = rope_apply(k, grid_sizes, freqs) | |
# x = flash_attention(q=q, k=k, v=v, window_size=self.window_size) | |
# else: | |
# q = rope_apply(q, grid_sizes, freqs) | |
# k = rope_apply(k, grid_sizes, freqs) | |
# q = q.to(torch.bfloat16) | |
# k = k.to(torch.bfloat16) | |
# v = v.to(torch.bfloat16) | |
# with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): | |
# x = ( | |
# torch.nn.functional.scaled_dot_product_attention( | |
# q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), attn_mask=block_mask | |
# ) | |
# .transpose(1, 2) | |
# .contiguous() | |
# ) | |
# output | |
x = x.flatten(2) | |
x = self.o(x) | |
return x | |
class WanT2VCrossAttention(WanSelfAttention): | |
def forward(self, xlist, context, grid_sizes, *args, **kwargs): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
context(Tensor): Shape [B, L2, C] | |
""" | |
x = xlist[0] | |
xlist.clear() | |
b, n, d = x.size(0), self.num_heads, self.head_dim | |
# compute query, key, value | |
q = self.q(x) | |
del x | |
self.norm_q(q) | |
q= q.view(b, -1, n, d) | |
k = self.k(context) | |
self.norm_k(k) | |
k = k.view(b, -1, n, d) | |
v = self.v(context).view(b, -1, n, d) | |
# compute attention | |
v = v.contiguous().clone() | |
qvl_list=[q, k, v] | |
del q, k, v | |
x = pay_attention(qvl_list, cross_attn= True) | |
# output | |
x = x.flatten(2) | |
x = self.o(x) | |
return x | |
class WanI2VCrossAttention(WanSelfAttention): | |
def __init__(self, | |
dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
eps=1e-6, | |
block_no=0): | |
super().__init__(dim, num_heads, window_size, qk_norm, eps, block_no) | |
self.k_img = nn.Linear(dim, dim) | |
self.v_img = nn.Linear(dim, dim) | |
# self.alpha = nn.Parameter(torch.zeros((1, ))) | |
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
def forward(self, xlist, context, grid_sizes, audio_proj, audio_scale, audio_context_lens ): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
context(Tensor): Shape [B, L2, C] | |
""" | |
##### Enjoy this spagheti VRAM optimizations done by DeepBeepMeep ! | |
# I am sure you are a nice person and as you copy this code, you will give me officially proper credits: | |
# Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter | |
x = xlist[0] | |
xlist.clear() | |
context_img = context[:, :257] | |
context = context[:, 257:] | |
b, n, d = x.size(0), self.num_heads, self.head_dim | |
# compute query, key, value | |
q = self.q(x) | |
del x | |
self.norm_q(q) | |
q= q.view(b, -1, n, d) | |
k = self.k(context) | |
self.norm_k(k) | |
k = k.view(b, -1, n, d) | |
v = self.v(context).view(b, -1, n, d) | |
qkv_list = [q, k, v] | |
del k,v | |
x = pay_attention(qkv_list) | |
if audio_scale != None: | |
audio_x = self.processor(q, audio_proj, grid_sizes[0], audio_context_lens) | |
k_img = self.k_img(context_img) | |
self.norm_k_img(k_img) | |
k_img = k_img.view(b, -1, n, d) | |
v_img = self.v_img(context_img).view(b, -1, n, d) | |
qkv_list = [q, k_img, v_img] | |
del q, k_img, v_img | |
img_x = pay_attention(qkv_list) | |
# compute attention | |
# output | |
x = x.flatten(2) | |
img_x = img_x.flatten(2) | |
x += img_x | |
del img_x | |
if audio_scale != None: | |
x.add_(audio_x, alpha= audio_scale) | |
x = self.o(x) | |
return x | |
WAN_CROSSATTENTION_CLASSES = { | |
't2v_cross_attn': WanT2VCrossAttention, | |
'i2v_cross_attn': WanI2VCrossAttention, | |
} | |
class WanAttentionBlock(nn.Module): | |
def __init__(self, | |
cross_attn_type, | |
dim, | |
ffn_dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
cross_attn_norm=False, | |
eps=1e-6, | |
block_id=None, | |
block_no = 0 | |
): | |
super().__init__() | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
self.block_no = block_no | |
# layers | |
self.norm1 = WanLayerNorm(dim, eps) | |
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, | |
eps, block_no= block_no) | |
self.norm3 = WanLayerNorm( | |
dim, eps, | |
elementwise_affine=True) if cross_attn_norm else nn.Identity() | |
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, | |
num_heads, | |
(-1, -1), | |
qk_norm, | |
eps, | |
block_no) | |
self.norm2 = WanLayerNorm(dim, eps) | |
self.ffn = nn.Sequential( | |
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'), | |
nn.Linear(ffn_dim, dim)) | |
# modulation | |
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) | |
self.block_id = block_id | |
def forward( | |
self, | |
x, | |
e, | |
grid_sizes, | |
freqs, | |
context, | |
hints= None, | |
context_scale=[1.0], | |
cam_emb= None, | |
block_mask = None, | |
audio_proj= None, | |
audio_context_lens= None, | |
audio_scale=None, | |
): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, C] | |
e(Tensor): Shape [B, 6, C] | |
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
""" | |
hints_processed = None | |
attention_dtype = self.self_attn.q.weight.dtype | |
dtype = x.dtype | |
if self.block_id is not None and hints is not None: | |
kwargs = { | |
"grid_sizes" : grid_sizes, | |
"freqs" :freqs, | |
"context" : context, | |
"e" : e, | |
} | |
hints_processed= [] | |
for scale, hint in zip(context_scale, hints): | |
if scale == 0: | |
hints_processed.append(None) | |
else: | |
hints_processed.append(self.vace(hint, x, **kwargs) if self.block_id == 0 else self.vace(hint, None, **kwargs)) | |
latent_frames = e.shape[0] | |
e = (self.modulation + e).chunk(6, dim=1) | |
# self-attention | |
x_mod = self.norm1(x) | |
x_mod = reshape_latent(x_mod , latent_frames) | |
x_mod *= 1 + e[1] | |
x_mod += e[0] | |
x_mod = reshape_latent(x_mod , 1) | |
if cam_emb != None: | |
cam_emb = self.cam_encoder(cam_emb) | |
cam_emb = cam_emb.repeat(1, 2, 1) | |
cam_emb = cam_emb.unsqueeze(2).unsqueeze(3).repeat(1, 1, grid_sizes[1], grid_sizes[2], 1) | |
cam_emb = rearrange(cam_emb, 'b f h w d -> b (f h w) d') | |
x_mod += cam_emb | |
xlist = [x_mod.to(attention_dtype)] | |
del x_mod | |
y = self.self_attn( xlist, grid_sizes, freqs, block_mask) | |
y = y.to(dtype) | |
if cam_emb != None: | |
y = self.projector(y) | |
x, y = reshape_latent(x , latent_frames), reshape_latent(y , latent_frames) | |
x.addcmul_(y, e[2]) | |
x, y = reshape_latent(x , 1), reshape_latent(y , 1) | |
del y | |
y = self.norm3(x) | |
y = y.to(attention_dtype) | |
ylist= [y] | |
del y | |
x += self.cross_attn(ylist, context, grid_sizes, audio_proj, audio_scale, audio_context_lens).to(dtype) | |
y = self.norm2(x) | |
y = reshape_latent(y , latent_frames) | |
y *= 1 + e[4] | |
y += e[3] | |
y = reshape_latent(y , 1) | |
y = y.to(attention_dtype) | |
ffn = self.ffn[0] | |
gelu = self.ffn[1] | |
ffn2= self.ffn[2] | |
y_shape = y.shape | |
y = y.view(-1, y_shape[-1]) | |
chunk_size = int(y_shape[1]/2.7) | |
chunks =torch.split(y, chunk_size) | |
for y_chunk in chunks: | |
mlp_chunk = ffn(y_chunk) | |
mlp_chunk = gelu(mlp_chunk) | |
y_chunk[...] = ffn2(mlp_chunk) | |
del mlp_chunk | |
y = y.view(y_shape) | |
y = y.to(dtype) | |
x, y = reshape_latent(x , latent_frames), reshape_latent(y , latent_frames) | |
x.addcmul_(y, e[5]) | |
x, y = reshape_latent(x , 1), reshape_latent(y , 1) | |
if hints_processed is not None: | |
for hint, scale in zip(hints_processed, context_scale): | |
if scale != 0: | |
if scale == 1: | |
x.add_(hint) | |
else: | |
x.add_(hint, alpha= scale) | |
return x | |
class VaceWanAttentionBlock(WanAttentionBlock): | |
def __init__( | |
self, | |
cross_attn_type, | |
dim, | |
ffn_dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
cross_attn_norm=False, | |
eps=1e-6, | |
block_id=0 | |
): | |
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps) | |
self.block_id = block_id | |
if block_id == 0: | |
self.before_proj = nn.Linear(self.dim, self.dim) | |
nn.init.zeros_(self.before_proj.weight) | |
nn.init.zeros_(self.before_proj.bias) | |
self.after_proj = nn.Linear(self.dim, self.dim) | |
nn.init.zeros_(self.after_proj.weight) | |
nn.init.zeros_(self.after_proj.bias) | |
def forward(self, hints, x, **kwargs): | |
# behold dbm magic ! | |
c = hints[0] | |
hints[0] = None | |
if self.block_id == 0: | |
c = self.before_proj(c) | |
c += x | |
c = super().forward(c, **kwargs) | |
c_skip = self.after_proj(c) | |
hints[0] = c | |
return c_skip | |
class Head(nn.Module): | |
def __init__(self, dim, out_dim, patch_size, eps=1e-6): | |
super().__init__() | |
self.dim = dim | |
self.out_dim = out_dim | |
self.patch_size = patch_size | |
self.eps = eps | |
# layers | |
out_dim = math.prod(patch_size) * out_dim | |
self.norm = WanLayerNorm(dim, eps) | |
self.head = nn.Linear(dim, out_dim) | |
# modulation | |
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) | |
def forward(self, x, e): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
e(Tensor): Shape [B, C] | |
""" | |
# assert e.dtype == torch.float32 | |
dtype = x.dtype | |
latent_frames = e.shape[0] | |
e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1) | |
x = self.norm(x).to(dtype) | |
x = reshape_latent(x , latent_frames) | |
x *= (1 + e[1]) | |
x += e[0] | |
x = reshape_latent(x , 1) | |
x= x.to(self.head.weight.dtype) | |
x = self.head(x) | |
return x | |
class MLPProj(torch.nn.Module): | |
def __init__(self, in_dim, out_dim): | |
super().__init__() | |
self.proj = torch.nn.Sequential( | |
torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim), | |
torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim), | |
torch.nn.LayerNorm(out_dim)) | |
def forward(self, image_embeds): | |
clip_extra_context_tokens = self.proj(image_embeds) | |
return clip_extra_context_tokens | |
class WanModel(ModelMixin, ConfigMixin): | |
def setup_chipmunk(self): | |
# from chipmunk.util import LayerCounter | |
# from chipmunk.modules import SparseDiffMlp, SparseDiffAttn | |
seq_shape = (21, 45, 80) | |
chipmunk_layers =[] | |
for i in range(self.num_layers): | |
layer_num, layer_counter = LayerCounter.build_for_layer(is_attn_sparse=True, is_mlp_sparse=False) | |
chipmunk_layers.append( SparseDiffAttn(layer_num, layer_counter)) | |
offload.shared_state["_chipmunk_layers"] = chipmunk_layers | |
chipmunk_layers[0].initialize_static_mask( | |
seq_shape=seq_shape, | |
txt_len=0, | |
local_heads_num=self.num_heads, | |
device='cuda' | |
) | |
chipmunk_layers[0].layer_counter.reset() | |
def release_chipmunk(self): | |
offload.shared_state["_chipmunk_layers"] = None | |
def preprocess_loras(self, model_type, sd): | |
first = next(iter(sd), None) | |
if first == None: | |
return sd | |
if first.startswith("lora_unet_"): | |
new_sd = {} | |
print("Converting Lora Safetensors format to Lora Diffusers format") | |
alphas = {} | |
repl_list = ["cross_attn", "self_attn", "ffn"] | |
src_list = ["_" + k + "_" for k in repl_list] | |
tgt_list = ["." + k + "." for k in repl_list] | |
for k,v in sd.items(): | |
k = k.replace("lora_unet_blocks_","diffusion_model.blocks.") | |
for s,t in zip(src_list, tgt_list): | |
k = k.replace(s,t) | |
k = k.replace("lora_up","lora_B") | |
k = k.replace("lora_down","lora_A") | |
if "alpha" in k: | |
alphas[k] = v | |
else: | |
new_sd[k] = v | |
new_alphas = {} | |
for k,v in new_sd.items(): | |
if "lora_B" in k: | |
dim = v.shape[1] | |
elif "lora_A" in k: | |
dim = v.shape[0] | |
else: | |
continue | |
alpha_key = k[:-len("lora_X.weight")] +"alpha" | |
if alpha_key in alphas: | |
scale = alphas[alpha_key] / dim | |
new_alphas[alpha_key] = scale | |
else: | |
print(f"Lora alpha'{alpha_key}' is missing") | |
new_sd.update(new_alphas) | |
sd = new_sd | |
from wgp import test_class_i2v | |
if not test_class_i2v(model_type): | |
new_sd = {} | |
# convert loras for i2v to t2v | |
for k,v in sd.items(): | |
if any(layer in k for layer in ["cross_attn.k_img", "cross_attn.v_img"]): | |
continue | |
new_sd[k] = v | |
sd = new_sd | |
return sd | |
r""" | |
Wan diffusion backbone supporting both text-to-video and image-to-video. | |
""" | |
ignore_for_config = [ | |
'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size' | |
] | |
_no_split_modules = ['WanAttentionBlock'] | |
def __init__(self, | |
vace_layers=None, | |
vace_in_dim=None, | |
model_type='t2v', | |
patch_size=(1, 2, 2), | |
text_len=512, | |
in_dim=16, | |
dim=2048, | |
ffn_dim=8192, | |
freq_dim=256, | |
text_dim=4096, | |
out_dim=16, | |
num_heads=16, | |
num_layers=32, | |
window_size=(-1, -1), | |
qk_norm=True, | |
cross_attn_norm=True, | |
eps=1e-6, | |
recammaster = False, | |
inject_sample_info = False, | |
fantasytalking_dim = 0, | |
): | |
r""" | |
Initialize the diffusion model backbone. | |
Args: | |
model_type (`str`, *optional*, defaults to 't2v'): | |
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) | |
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): | |
3D patch dimensions for video embedding (t_patch, h_patch, w_patch) | |
text_len (`int`, *optional*, defaults to 512): | |
Fixed length for text embeddings | |
in_dim (`int`, *optional*, defaults to 16): | |
Input video channels (C_in) | |
dim (`int`, *optional*, defaults to 2048): | |
Hidden dimension of the transformer | |
ffn_dim (`int`, *optional*, defaults to 8192): | |
Intermediate dimension in feed-forward network | |
freq_dim (`int`, *optional*, defaults to 256): | |
Dimension for sinusoidal time embeddings | |
text_dim (`int`, *optional*, defaults to 4096): | |
Input dimension for text embeddings | |
out_dim (`int`, *optional*, defaults to 16): | |
Output video channels (C_out) | |
num_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads | |
num_layers (`int`, *optional*, defaults to 32): | |
Number of transformer blocks | |
window_size (`tuple`, *optional*, defaults to (-1, -1)): | |
Window size for local attention (-1 indicates global attention) | |
qk_norm (`bool`, *optional*, defaults to True): | |
Enable query/key normalization | |
cross_attn_norm (`bool`, *optional*, defaults to False): | |
Enable cross-attention normalization | |
eps (`float`, *optional*, defaults to 1e-6): | |
Epsilon value for normalization layers | |
""" | |
super().__init__() | |
assert model_type in ['t2v', 'i2v'] | |
self.model_type = model_type | |
self.patch_size = patch_size | |
self.text_len = text_len | |
self.in_dim = in_dim | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.freq_dim = freq_dim | |
self.text_dim = text_dim | |
self.out_dim = out_dim | |
self.num_heads = num_heads | |
self.num_layers = num_layers | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
self.num_frame_per_block = 1 | |
self.flag_causal_attention = False | |
self.block_mask = None | |
self.inject_sample_info = inject_sample_info | |
# embeddings | |
self.patch_embedding = nn.Conv3d( | |
in_dim, dim, kernel_size=patch_size, stride=patch_size) | |
self.text_embedding = nn.Sequential( | |
nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), | |
nn.Linear(dim, dim)) | |
if inject_sample_info: | |
self.fps_embedding = nn.Embedding(2, dim) | |
self.fps_projection = nn.Sequential(nn.Linear(dim, dim), nn.SiLU(), nn.Linear(dim, dim * 6)) | |
self.time_embedding = nn.Sequential( | |
nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) | |
# blocks | |
if vace_layers == None: | |
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' | |
self.blocks = nn.ModuleList([ | |
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, | |
window_size, qk_norm, cross_attn_norm, eps, block_no =i) | |
for i in range(num_layers) | |
]) | |
# head | |
self.head = Head(dim, out_dim, patch_size, eps) | |
# buffers (don't use register_buffer otherwise dtype will be changed in to()) | |
if model_type == 'i2v': | |
self.img_emb = MLPProj(1280, dim) | |
# initialize weights | |
self.init_weights() | |
if vace_layers != None: | |
self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers | |
self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim | |
assert 0 in self.vace_layers | |
self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)} | |
# blocks | |
self.blocks = nn.ModuleList([ | |
WanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm, | |
self.cross_attn_norm, self.eps, block_no =i, | |
block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None) | |
for i in range(self.num_layers) | |
]) | |
# vace blocks | |
self.vace_blocks = nn.ModuleList([ | |
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm, | |
self.cross_attn_norm, self.eps, block_id=i) | |
for i in self.vace_layers | |
]) | |
# vace patch embeddings | |
self.vace_patch_embedding = nn.Conv3d( | |
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size | |
) | |
if recammaster : | |
dim=self.blocks[0].self_attn.q.weight.shape[0] | |
for block in self.blocks: | |
block.cam_encoder = nn.Linear(12, dim) | |
block.projector = nn.Linear(dim, dim) | |
block.cam_encoder.weight.data.zero_() | |
block.cam_encoder.bias.data.zero_() | |
block.projector.weight = nn.Parameter(torch.eye(dim)) | |
block.projector.bias = nn.Parameter(torch.zeros(dim)) | |
if fantasytalking_dim > 0: | |
from fantasytalking.model import WanCrossAttentionProcessor | |
for block in self.blocks: | |
block.cross_attn.processor = WanCrossAttentionProcessor(fantasytalking_dim, dim) | |
def lock_layers_dtypes(self, hybrid_dtype = None, dtype = torch.float32): | |
layer_list = [self.head, self.head.head, self.patch_embedding] | |
target_dype= dtype | |
layer_list2 = [ self.time_embedding, self.time_embedding[0], self.time_embedding[2], | |
self.time_projection, self.time_projection[1]] #, self.text_embedding, self.text_embedding[0], self.text_embedding[2] ] | |
for block in self.blocks: | |
layer_list2 += [block.norm3] | |
if hasattr(self, "fps_embedding"): | |
layer_list2 += [self.fps_embedding, self.fps_projection, self.fps_projection[0], self.fps_projection[2]] | |
if hasattr(self, "vace_patch_embedding"): | |
layer_list2 += [self.vace_patch_embedding] | |
layer_list2 += [self.vace_blocks[0].before_proj] | |
for block in self.vace_blocks: | |
layer_list2 += [block.after_proj, block.norm3] | |
target_dype2 = hybrid_dtype if hybrid_dtype != None else dtype | |
# cam master | |
if hasattr(self.blocks[0], "projector"): | |
for block in self.blocks: | |
layer_list2 += [block.projector] | |
for current_layer_list, current_dtype in zip([layer_list, layer_list2], [target_dype, target_dype2]): | |
for layer in current_layer_list: | |
layer._lock_dtype = dtype | |
if hasattr(layer, "weight") and layer.weight.dtype != current_dtype : | |
layer.weight.data = layer.weight.data.to(current_dtype) | |
if hasattr(layer, "bias"): | |
layer.bias.data = layer.bias.data.to(current_dtype) | |
self._lock_dtype = dtype | |
def compute_teacache_threshold(self, start_step, timesteps = None, speed_factor =0): | |
modulation_dtype = self.time_projection[1].weight.dtype | |
rescale_func = np.poly1d(self.coefficients) | |
e_list = [] | |
for t in timesteps: | |
t = torch.stack([t]) | |
time_emb = self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(modulation_dtype) ) # b, dim | |
e_list.append(time_emb) | |
best_deltas = None | |
best_threshold = 0.01 | |
best_diff = 1000 | |
best_signed_diff = 1000 | |
target_nb_steps= int(len(timesteps) / speed_factor) | |
threshold = 0.01 | |
while threshold <= 0.6: | |
accumulated_rel_l1_distance =0 | |
nb_steps = 0 | |
diff = 1000 | |
deltas = [] | |
for i, t in enumerate(timesteps): | |
skip = False | |
if not (i<=start_step or i== len(timesteps)-1): | |
delta = abs(rescale_func(((e_list[i]-e_list[i-1]).abs().mean() / e_list[i-1].abs().mean()).cpu().item())) | |
# deltas.append(delta) | |
accumulated_rel_l1_distance += delta | |
if accumulated_rel_l1_distance < threshold: | |
skip = True | |
# deltas.append("SKIP") | |
else: | |
accumulated_rel_l1_distance = 0 | |
if not skip: | |
nb_steps += 1 | |
signed_diff = target_nb_steps - nb_steps | |
diff = abs(signed_diff) | |
if diff < best_diff: | |
best_threshold = threshold | |
best_deltas = deltas | |
best_diff = diff | |
best_signed_diff = signed_diff | |
elif diff > best_diff: | |
break | |
threshold += 0.01 | |
self.rel_l1_thresh = best_threshold | |
print(f"Tea Cache, best threshold found:{best_threshold:0.2f} with gain x{len(timesteps)/(target_nb_steps - best_signed_diff):0.2f} for a target of x{speed_factor}") | |
# print(f"deltas:{best_deltas}") | |
return best_threshold | |
def forward( | |
self, | |
x, | |
t, | |
context, | |
vace_context = None, | |
vace_context_scale=[1.0], | |
clip_fea=None, | |
y=None, | |
freqs = None, | |
pipeline = None, | |
current_step = 0, | |
x_id= 0, | |
max_steps = 0, | |
slg_layers=None, | |
callback = None, | |
cam_emb: torch.Tensor = None, | |
fps = None, | |
causal_block_size = 1, | |
causal_attention = False, | |
audio_proj=None, | |
audio_context_lens=None, | |
audio_scale=None, | |
): | |
# patch_dtype = self.patch_embedding.weight.dtype | |
modulation_dtype = self.time_projection[1].weight.dtype | |
if self.model_type == 'i2v': | |
assert clip_fea is not None and y is not None | |
# params | |
device = self.patch_embedding.weight.device | |
if torch.is_tensor(freqs) and freqs.device != device: | |
freqs = freqs.to(device) | |
chipmunk = offload.shared_state.get("_chipmunk", False) | |
if chipmunk: | |
# from chipmunk.ops.voxel import voxel_chunk_no_padding, reverse_voxel_chunk_no_padding | |
voxel_shape = (4, 6, 8) | |
x_list = x | |
joint_pass = len(x_list) > 1 | |
is_source_x = [ x.data_ptr() == x_list[0].data_ptr() and i > 0 for i, x in enumerate(x_list) ] | |
last_x_idx = 0 | |
for i, (is_source, x) in enumerate(zip(is_source_x, x_list)): | |
if is_source: | |
x_list[i] = x_list[0].clone() | |
last_x_idx = i | |
else: | |
# image source | |
if y is not None: | |
x = torch.cat([x, y], dim=0) | |
# embeddings | |
x = self.patch_embedding(x.unsqueeze(0)).to(modulation_dtype) | |
grid_sizes = x.shape[2:] | |
if chipmunk: | |
x = x.unsqueeze(-1) | |
x_og_shape = x.shape | |
x = voxel_chunk_no_padding(x, voxel_shape).squeeze(-1).transpose(1, 2) | |
else: | |
x = x.flatten(2).transpose(1, 2) | |
x_list[i] = x | |
x, y = None, None | |
block_mask = None | |
if causal_attention and causal_block_size > 0 and False: # NEVER WORKED | |
frame_num = grid_sizes[0] | |
height = grid_sizes[1] | |
width = grid_sizes[2] | |
block_num = frame_num // causal_block_size | |
range_tensor = torch.arange(block_num).view(-1, 1) | |
range_tensor = range_tensor.repeat(1, causal_block_size).flatten() | |
causal_mask = range_tensor.unsqueeze(0) <= range_tensor.unsqueeze(1) # f, f | |
causal_mask = causal_mask.view(frame_num, 1, 1, frame_num, 1, 1).to(x[0].device) | |
causal_mask = causal_mask.repeat(1, height, width, 1, height, width) | |
causal_mask = causal_mask.reshape(frame_num * height * width, frame_num * height * width) | |
block_mask = causal_mask.unsqueeze(0).unsqueeze(0) | |
del causal_mask | |
offload.shared_state["embed_sizes"] = grid_sizes | |
offload.shared_state["step_no"] = current_step | |
offload.shared_state["max_steps"] = max_steps | |
_flag_df = t.dim() == 2 | |
e = self.time_embedding( | |
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(modulation_dtype) # self.patch_embedding.weight.dtype) | |
) # b, dim | |
e0 = self.time_projection(e).unflatten(1, (6, self.dim)).to(e.dtype) | |
if self.inject_sample_info: | |
fps = torch.tensor(fps, dtype=torch.long, device=device) | |
fps_emb = self.fps_embedding(fps).to(e.dtype) | |
if _flag_df: | |
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim)).repeat(t.shape[1], 1, 1) | |
else: | |
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim)) | |
# context | |
context = [self.text_embedding( torch.cat( [u, u.new_zeros(self.text_len - u.size(0), u.size(1))] ).unsqueeze(0) ) for u in context ] | |
if clip_fea is not None: | |
context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
context = [ torch.cat( [context_clip, u ], dim=1 ) for u in context ] | |
context_list = context | |
if audio_scale != None: | |
audio_scale_list = audio_scale | |
else: | |
audio_scale_list = [None] * len(x_list) | |
# arguments | |
kwargs = dict( | |
grid_sizes=grid_sizes, | |
freqs=freqs, | |
cam_emb = cam_emb, | |
block_mask = block_mask, | |
audio_proj=audio_proj, | |
audio_context_lens=audio_context_lens, | |
) | |
if vace_context == None: | |
hints_list = [None ] *len(x_list) | |
else: | |
# Vace embeddings | |
c = [self.vace_patch_embedding(u.to(self.vace_patch_embedding.weight.dtype).unsqueeze(0)) for u in vace_context] | |
c = [u.flatten(2).transpose(1, 2) for u in c] | |
kwargs['context_scale'] = vace_context_scale | |
hints_list = [ [ [sub_c] for sub_c in c] for _ in range(len(x_list)) ] | |
del c | |
should_calc = True | |
if self.enable_cache: | |
if x_id != 0: | |
should_calc = self.should_calc | |
else: | |
if current_step <= self.cache_start_step or current_step == self.num_steps-1: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
else: | |
rescale_func = np.poly1d(self.coefficients) | |
delta = abs(rescale_func(((e-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())) | |
self.accumulated_rel_l1_distance += delta | |
if self.accumulated_rel_l1_distance < self.rel_l1_thresh: | |
should_calc = False | |
self.teacache_skipped_steps += 1 | |
# print(f"Teacache Skipped Step no {current_step} ({self.teacache_skipped_steps}/{current_step}), delta={delta}" ) | |
else: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
self.previous_modulated_input = e | |
self.should_calc = should_calc | |
if not should_calc: | |
if joint_pass: | |
for i, x in enumerate(x_list): | |
x += self.previous_residual[i] | |
else: | |
x = x_list[0] | |
x += self.previous_residual[x_id] | |
x = None | |
else: | |
if self.enable_cache: | |
if joint_pass: | |
self.previous_residual = [ None ] * len(self.previous_residual) | |
else: | |
self.previous_residual[x_id] = None | |
ori_hidden_states = [ None ] * len(x_list) | |
ori_hidden_states[0] = x_list[0].clone() | |
for i in range(1, len(x_list)): | |
ori_hidden_states[i] = ori_hidden_states[0] if is_source_x[i] else x_list[i].clone() | |
for block_idx, block in enumerate(self.blocks): | |
offload.shared_state["layer"] = block_idx | |
if callback != None: | |
callback(-1, None, False, True) | |
if pipeline._interrupt: | |
return [None] * len(x_list) | |
if (x_id != 0 or joint_pass) and slg_layers is not None and block_idx in slg_layers: | |
if not joint_pass: | |
continue | |
x_list[0] = block(x_list[0], context = context_list[0], e= e0, **kwargs) | |
else: | |
for i, (x, context, hints, audio_scale) in enumerate(zip(x_list, context_list, hints_list, audio_scale_list)): | |
x_list[i] = block(x, context = context, hints= hints, audio_scale= audio_scale, e= e0, **kwargs) | |
del x | |
del context, hints | |
if self.enable_cache: | |
if joint_pass: | |
for i, (x, ori, is_source) in enumerate(zip(x_list, ori_hidden_states, is_source_x)) : | |
if i == 0 or is_source and i != last_x_idx : | |
self.previous_residual[i] = torch.sub(x, ori) | |
else: | |
self.previous_residual[i] = ori | |
torch.sub(x, ori, out=self.previous_residual[i]) | |
ori_hidden_states[i] = None | |
x , ori = None, None | |
else: | |
residual = ori_hidden_states[0] # just to have a readable code | |
torch.sub(x_list[0], ori_hidden_states[0], out=residual) | |
self.previous_residual[x_id] = residual | |
residual, ori_hidden_states = None, None | |
for i, x in enumerate(x_list): | |
if chipmunk: | |
x = reverse_voxel_chunk_no_padding(x.transpose(1, 2).unsqueeze(-1), x_og_shape, voxel_shape).squeeze(-1) | |
x = x.flatten(2).transpose(1, 2) | |
# head | |
x = self.head(x, e) | |
# unpatchify | |
x_list[i] = self.unpatchify(x, grid_sizes) | |
del x | |
return [x[0].float() for x in x_list] | |
def unpatchify(self, x, grid_sizes): | |
r""" | |
Reconstruct video tensors from patch embeddings. | |
Args: | |
x (List[Tensor]): | |
List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
grid_sizes (Tensor): | |
Original spatial-temporal grid dimensions before patching, | |
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
Returns: | |
List[Tensor]: | |
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] | |
""" | |
c = self.out_dim | |
out = [] | |
for u in x: | |
u = u[:math.prod(grid_sizes)].view(*grid_sizes, *self.patch_size, c) | |
u = torch.einsum('fhwpqrc->cfphqwr', u) | |
u = u.reshape(c, *[i * j for i, j in zip(grid_sizes, self.patch_size)]) | |
out.append(u) | |
return out | |
def init_weights(self): | |
r""" | |
Initialize model parameters using Xavier initialization. | |
""" | |
# basic init | |
for m in self.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
# init embeddings | |
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) | |
for m in self.text_embedding.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, std=.02) | |
for m in self.time_embedding.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, std=.02) | |
# init output layer | |
nn.init.zeros_(self.head.head.weight) | |