Spaces:
Running
Running
""" | |
Copyright (c) 2024 by SageAttention team. | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
""" | |
import torch | |
import torch.nn.functional as F | |
from sageattention.triton.quant_per_block import per_block_int8 as per_block_int8_triton | |
from sageattention.triton.quant_per_block_varlen import per_block_int8 as per_block_int8_varlen_triton | |
from sageattention.triton.attn_qk_int8_per_block import forward as attn_false | |
from sageattention.triton.attn_qk_int8_per_block_causal import forward as attn_true | |
from sageattention.triton.attn_qk_int8_block_varlen import forward as attn_false_varlen | |
from sageattention.triton.attn_qk_int8_per_block_causal_varlen import forward as attn_true_varlen | |
from sageattention.triton.quant_per_thread import per_thread_int8 as per_thread_int8_triton | |
try: | |
from sageattention import _qattn_sm80 | |
SM80_ENABLED = True | |
except: | |
SM80_ENABLED = False | |
try: | |
from sageattention import _qattn_sm89 | |
SM89_ENABLED = True | |
except: | |
SM89_ENABLED = False | |
try: | |
from sageattention import _qattn_sm90 | |
SM90_ENABLED = True | |
except: | |
SM90_ENABLED = False | |
from sageattention.quant import per_block_int8 as per_block_int8_cuda | |
from sageattention.quant import per_warp_int8 as per_warp_int8_cuda | |
from sageattention.quant import sub_mean | |
from sageattention.quant import per_channel_fp8 | |
from typing import Any, List, Literal, Optional, Tuple, Union | |
import warnings | |
import os | |
def is_sage2_supported(): | |
device_count = torch.cuda.device_count() | |
for i in range(device_count): | |
major, minor = torch.cuda.get_device_capability(i) | |
if major < 8: | |
return False | |
return True | |
def get_cuda_arch_versions(): | |
cuda_archs = [] | |
for i in range(torch.cuda.device_count()): | |
major, minor = torch.cuda.get_device_capability(i) | |
cuda_archs.append(f"sm{major}{minor}") | |
return cuda_archs | |
def sageattn( | |
qkv_list, | |
tensor_layout: str = "HND", | |
is_causal: bool = False, | |
sm_scale: Optional[float] = None, | |
return_lse: bool = False, | |
**kwargs: Any, | |
): | |
""" | |
Automatically selects the appropriate implementation of the SageAttention kernel based on the GPU compute capability. | |
Parameters | |
---------- | |
q : torch.Tensor | |
The query tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
k : torch.Tensor | |
The key tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
v : torch.Tensor | |
The value tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
tensor_layout : str | |
The tensor layout, either "HND" or "NHD". | |
Default: "HND". | |
is_causal : bool | |
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len. | |
Default: False. | |
sm_scale : Optional[float] | |
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``. | |
return_lse : bool | |
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention. | |
Default: False. | |
Returns | |
------- | |
torch.Tensor | |
The output tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
torch.Tensor | |
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). | |
Shape: ``[batch_size, num_qo_heads, qo_len]``. | |
Only returned if `return_lse` is True. | |
Note | |
---- | |
- ``num_qo_heads`` must be divisible by ``num_kv_heads``. | |
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16`` or ``torch.bfloat16`` | |
- All tensors must be on the same cuda device. | |
""" | |
arch = get_cuda_arch_versions()[qkv_list[0].device.index] | |
if arch == "sm80": | |
return sageattn_qk_int8_pv_fp16_cuda(qkv_list, tensor_layout=tensor_layout, is_causal=is_causal, sm_scale=sm_scale, return_lse=return_lse, pv_accum_dtype="fp32") | |
elif arch == "sm86": | |
return sageattn_qk_int8_pv_fp16_triton(qkv_list, tensor_layout=tensor_layout, is_causal=is_causal, sm_scale=sm_scale, return_lse=return_lse) | |
elif arch == "sm89": | |
return sageattn_qk_int8_pv_fp8_cuda(qkv_list, tensor_layout=tensor_layout, is_causal=is_causal, sm_scale=sm_scale, return_lse=return_lse, pv_accum_dtype="fp32+fp32") | |
elif arch == "sm90": | |
return sageattn_qk_int8_pv_fp8_cuda_sm90(qkv_list, tensor_layout=tensor_layout, is_causal=is_causal, sm_scale=sm_scale, return_lse=return_lse, pv_accum_dtype="fp32+fp32") | |
elif arch == "sm120": | |
return sageattn_qk_int8_pv_fp8_cuda(qkv_list, tensor_layout=tensor_layout, is_causal=is_causal, qk_quant_gran="per_warp", sm_scale=sm_scale, return_lse=return_lse, pv_accum_dtype="fp32", smooth_v= True) # sm120 has accurate fp32 accumulator for fp8 mma and triton kernel is currently not usable on sm120. | |
else: | |
raise ValueError(f"Unsupported CUDA architecture: {arch}") | |
def sageattn_qk_int8_pv_fp16_triton( | |
qkv_list, | |
# q: torch.Tensor, | |
# k: torch.Tensor, | |
# v: torch.Tensor, | |
tensor_layout: str = "HND", | |
quantization_backend: str = "triton", | |
is_causal: bool =False, | |
sm_scale: Optional[float] = None, | |
smooth_k: bool = True, | |
return_lse: bool = False, | |
**kwargs: Any, | |
) -> torch.Tensor: | |
""" | |
SageAttention with per-block INT8 quantization for Q and K, FP16 PV with FP16 accumulation, implemented using Triton. | |
The FP16 accumulator is added to a FP32 buffer immediately after each iteration. | |
Parameters | |
---------- | |
q : torch.Tensor | |
The query tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
k : torch.Tensor | |
The key tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
v : torch.Tensor | |
The value tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
tensor_layout : str | |
The tensor layout, either "HND" or "NHD". | |
Default: "HND". | |
quantization_backend : str | |
The quantization backend, either "triton" or "cuda". | |
"cuda" backend offers better performance due to kernel fusion. | |
is_causal : bool | |
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len. | |
Default: False. | |
sm_scale : Optional[float] | |
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``. | |
smooth_k : bool | |
Whether to smooth the key tensor by subtracting the mean along the sequence dimension. | |
Default: True. | |
return_lse : bool | |
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention. | |
Default: False. | |
Returns | |
------- | |
torch.Tensor | |
The output tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
torch.Tensor | |
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). | |
Shape: ``[batch_size, num_qo_heads, qo_len]``. | |
Only returned if `return_lse` is True. | |
Note | |
---- | |
- ``num_qo_heads`` must be divisible by ``num_kv_heads``. | |
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16``, ``torch.bfloat16`` or ``torch.float32``. | |
- All tensors must be on the same cuda device. | |
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances. | |
""" | |
q, k, v = qkv_list | |
qkv_list.clear() | |
dtype = q.dtype | |
assert q.is_cuda, "Input tensors must be on cuda." | |
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16" | |
assert q.device == k.device == v.device, "All tensors must be on the same device." | |
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype." | |
# FIXME(DefTruth): make sage attention work compatible with distributed | |
# env, for example, xDiT which launch by torchrun. Without this workaround, | |
# sage attention will run into illegal memory access error after first | |
# inference step in distributed env for multi gpus inference. This small | |
# workaround also make sage attention work compatible with torch.compile | |
# through non-fullgraph compile mode. | |
torch.cuda.set_device(v.device) | |
head_dim_og = q.size(-1) | |
if head_dim_og < 64: | |
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og)) | |
elif head_dim_og > 64 and head_dim_og < 128: | |
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og)) | |
elif head_dim_og > 128: | |
raise ValueError(f"Unsupported head_dim: {head_dim_og}") | |
# assert last dim is contiguous | |
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous." | |
seq_dim = 1 if tensor_layout == "NHD" else 2 | |
if smooth_k: | |
km = k.mean(dim=seq_dim, keepdim=True) | |
if return_lse: | |
if tensor_layout == "NHD": | |
lse_correction = torch.matmul(q.transpose(1, 2), km.transpose(1, 2).transpose(2, 3)).squeeze(-1).to(torch.float32) | |
else: | |
lse_correction = torch.matmul(q, km.transpose(2, 3)).squeeze(-1).to(torch.float32) | |
else: | |
km = None | |
if dtype == torch.bfloat16 or dtype == torch.float32: | |
v = v.to(torch.float16) | |
if sm_scale is None: | |
sm_scale = 1.0 / (head_dim_og ** 0.5) | |
if quantization_backend == "triton": | |
q_int8, q_scale, k_int8, k_scale = per_block_int8_triton(q, k, km=km, sm_scale=sm_scale, tensor_layout=tensor_layout) | |
elif quantization_backend == "cuda": | |
q_int8, q_scale, k_int8, k_scale = per_block_int8_cuda(q, k, km=km, sm_scale=sm_scale, tensor_layout=tensor_layout) | |
else: | |
raise ValueError(f"Unsupported quantization backend: {quantization_backend}") | |
del q,k, km | |
if is_causal: | |
o, lse = attn_true(q_int8, k_int8, v, q_scale, k_scale, tensor_layout=tensor_layout, output_dtype=dtype, return_lse=return_lse) | |
else: | |
o, lse = attn_false(q_int8, k_int8, v, q_scale, k_scale, tensor_layout=tensor_layout, output_dtype=dtype, return_lse=return_lse) | |
o = o[..., :head_dim_og] | |
if return_lse: | |
return o, lse / 1.44269504 + lse_correction * sm_scale if smooth_k else lse / 1.44269504 | |
else: | |
return o | |
def sageattn_varlen( | |
q: torch.Tensor, | |
k: torch.Tensor, | |
v: torch.Tensor, | |
cu_seqlens_q: torch.Tensor, | |
cu_seqlens_k: torch.Tensor, | |
max_seqlen_q: int, | |
max_seqlen_k: int, | |
is_causal: bool = False, | |
sm_scale: Optional[float] = None, | |
smooth_k: bool = True, | |
**kwargs: Any, | |
) -> torch.Tensor: | |
""" | |
Parameters | |
---------- | |
q : torch.Tensor | |
The query tensor, shape: ``[cu_seqlens_q[-1], num_qo_heads, head_dim]``. | |
k : torch.Tensor | |
The key tensor, shape: ``[cu_seqlens_k[-1], num_kv_heads, head_dim]``. | |
v : torch.Tensor | |
The value tensor, shape: ``[cu_seqlens_k[-1], num_kv_heads, head_dim]``. | |
cu_seqlens_q : torch.Tensor | |
The cumulative sequence lengths for the query sequences in the batch, used to index into `q`. | |
Shape: ``[batch_size + 1]``, where each entry represents the cumulative length of sequences up to that batch index. | |
cu_seqlens_k : torch.Tensor | |
The cumulative sequence lengths for the key and value sequences in the batch, used to index into `k` and `v`. | |
Shape: ``[batch_size + 1]``, where each entry represents the cumulative length of sequences up to that batch index. | |
max_seqlen_q : int | |
The maximum sequence length for the query tensor in the batch. | |
max_seqlen_k : int | |
The maximum sequence length for the key and value tensors in the batch. | |
is_causal : bool | |
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len for each sequence. | |
Default: False. | |
sm_scale : Optional[float] | |
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``. | |
smooth_k : bool | |
Whether to smooth the key tensor by subtracting the mean along the sequence dimension. | |
Default: True. | |
Returns | |
------- | |
torch.Tensor | |
The output tensor, shape: ``[cu_seqlens_q[-1], num_qo_heads, head_dim]``. | |
Note | |
---- | |
- ``num_qo_heads`` must be divisible by ``num_kv_heads``. | |
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16``, ``torch.bfloat16`` or ``torch.float32``. | |
- The tensors `cu_seqlens_q` and `cu_seqlens_k` must have the dtype ``torch.int32`` or ``torch.int64``. | |
- All tensors must be on the same cuda device. | |
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances. | |
""" | |
dtype = q.dtype | |
assert q.is_cuda, "Input tensors must be on cuda." | |
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16" | |
assert q.device == k.device == v.device, "All tensors must be on the same device." | |
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype." | |
# FIXME(DefTruth): make sage attention work compatible with distributed | |
# env, for example, xDiT which launch by torchrun. Without this workaround, | |
# sage attention will run into illegal memory access error after first | |
# inference step in distributed env for multi gpus inference. This small | |
# workaround also make sage attention work compatible with torch.compile | |
# through non-fullgraph compile mode. | |
torch.cuda.set_device(v.device) | |
head_dim_og = q.size(-1) | |
if head_dim_og < 64: | |
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og)) | |
elif head_dim_og > 64 and head_dim_og < 128: | |
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og)) | |
elif head_dim_og > 128: | |
raise ValueError(f"Unsupported head_dim: {head_dim_og}") | |
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous." | |
assert cu_seqlens_q.is_contiguous() and cu_seqlens_k.is_contiguous(), "cu_seqlens_q and cu_seqlens_k must be contiguous." | |
if dtype == torch.bfloat16 or dtype == torch.float32: | |
v = v.to(torch.float16) | |
if smooth_k: | |
km = k.mean(dim=0, keepdim=True) # ! km is calculated on the all the batches. Calculate over each individual sequence requires dedicated kernel. | |
k = k - km | |
if sm_scale is None: | |
sm_scale = 1.0 / (head_dim_og ** 0.5) | |
q_int8, q_scale, k_int8, k_scale, cu_seqlens_q_scale, cu_seqlens_k_scale = per_block_int8_varlen_triton(q, k, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, sm_scale=sm_scale) | |
if is_causal: | |
o = attn_true_varlen(q_int8, k_int8, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, q_scale, k_scale, cu_seqlens_q_scale, cu_seqlens_k_scale, output_dtype=dtype) | |
else: | |
o = attn_false_varlen(q_int8, k_int8, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, q_scale, k_scale, cu_seqlens_q_scale, cu_seqlens_k_scale, output_dtype=dtype) | |
o = o[..., :head_dim_og] | |
return o | |
def sageattn_qk_int8_pv_fp16_cuda( | |
qkv_list, | |
# q: torch.Tensor, | |
# k: torch.Tensor, | |
# v: torch.Tensor, | |
tensor_layout: str = "HND", | |
is_causal: bool = False, | |
qk_quant_gran: str = "per_thread", | |
sm_scale: Optional[float] = None, | |
pv_accum_dtype: str = "fp32", | |
smooth_k: bool = True, | |
smooth_v: bool = False, | |
return_lse: bool = False, | |
**kwargs: Any, | |
) -> torch.Tensor: | |
""" | |
SageAttention with INT8 quantization for Q and K, FP16 PV with FP16/FP32 accumulation, implemented using CUDA. | |
Parameters | |
---------- | |
q : torch.Tensor | |
The query tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
k : torch.Tensor | |
The key tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
v : torch.Tensor | |
The value tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
tensor_layout : str | |
The tensor layout, either "HND" or "NHD". | |
Default: "HND". | |
is_causal : bool | |
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len. | |
Default: False. | |
qk_quant_gran : str | |
The granularity of quantization for Q and K, either "per_warp" or "per_thread". | |
Default: "per_thread". | |
sm_scale : Optional[float] | |
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``. | |
pv_accum_dtype : str | |
The dtype of the accumulation of the product of the value tensor and the attention weights, either "fp16", "fp16+fp32" or "fp32". | |
- "fp16": PV accumulation is done in fully in FP16. This is the fastest option but may lead to numerical instability. `smooth_v` option will increase the accuracy in cases when the value tensor has a large bias (like in CogVideoX-2b). | |
- "fp32": PV accumulation is done in FP32. This is the most accurate option but may be slower than "fp16" due to CUDA core overhead. | |
- "fp16+fp32": PV accumulation is done in FP16, but added to a FP32 buffer every few iterations. This offers a balance between speed and accuracy. | |
Default: "fp32". | |
smooth_k : bool | |
Whether to smooth the key tensor by subtracting the mean along the sequence dimension. | |
Default: True. | |
smooth_v : bool | |
Whether to smooth the value tensor by subtracting the mean along the sequence dimension. | |
smooth_v will be ignored if pv_accum_dtype is "fp32" or "fp16+fp32". | |
Default: False. | |
return_lse : bool | |
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention. | |
Default: False. | |
Returns | |
------- | |
torch.Tensor | |
The output tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
torch.Tensor | |
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). | |
Shape: ``[batch_size, num_qo_heads, qo_len]``. | |
Only returned if `return_lse` is True. | |
Note | |
---- | |
- ``num_qo_heads`` must be divisible by ``num_kv_heads``. | |
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16`` or ``torch.bfloat16`` | |
- All tensors must be on the same cuda device. | |
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances. | |
""" | |
q,k,v = qkv_list | |
qkv_list.clear() | |
dtype = q.dtype | |
assert SM80_ENABLED, "SM80 kernel is not available. make sure you GPUs with compute capability 8.0 or higher." | |
assert q.is_cuda, "Input tensors must be on cuda." | |
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16" | |
assert qk_quant_gran in ["per_warp", "per_thread"], "qk_quant_gran must be either 'per_warp' or 'per_thread'." | |
assert q.device == k.device == v.device, "All tensors must be on the same device." | |
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype." | |
# FIXME(DefTruth): make sage attention work compatible with distributed | |
# env, for example, xDiT which launch by torchrun. Without this workaround, | |
# sage attention will run into illegal memory access error after first | |
# inference step in distributed env for multi gpus inference. This small | |
# workaround also make sage attention work compatible with torch.compile | |
# through non-fullgraph compile mode. | |
torch.cuda.set_device(v.device) | |
_tensor_layout = 0 if tensor_layout == "NHD" else 1 | |
_is_caual = 1 if is_causal else 0 | |
_qk_quant_gran = 3 if qk_quant_gran == "per_thread" else 2 | |
_return_lse = 1 if return_lse else 0 | |
head_dim_og = q.size(-1) | |
if head_dim_og < 64: | |
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og)) | |
elif head_dim_og > 64 and head_dim_og < 128: | |
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og)) | |
elif head_dim_og > 128: | |
raise ValueError(f"Unsupported head_dim: {head_dim_og}") | |
# assert last dim is contiguous | |
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous." | |
if sm_scale is None: | |
sm_scale = head_dim_og**-0.5 | |
seq_dim = 1 if _tensor_layout == 0 else 2 | |
if smooth_k: | |
km = k.mean(dim=seq_dim, keepdim=True) | |
if return_lse: | |
if tensor_layout == "NHD": | |
lse_correction = torch.matmul(q.transpose(1, 2), km.transpose(1, 2).transpose(2, 3)).squeeze(-1).to(torch.float32) | |
else: | |
lse_correction = torch.matmul(q, km.transpose(2, 3)).squeeze(-1).to(torch.float32) | |
else: | |
km = None | |
if qk_quant_gran == "per_warp": | |
q_int8, q_scale, k_int8, k_scale = per_warp_int8_cuda(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=(16 if (q.size(-1) == 128 and pv_accum_dtype == "fp16+fp32") else 32), BLKK=64) | |
elif qk_quant_gran == "per_thread": | |
q_int8, q_scale, k_int8, k_scale = per_thread_int8_triton(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=(16 if (q.size(-1) == 128 and pv_accum_dtype == "fp16+fp32") else 32), BLKK=64, WARPK=64) | |
q_size = q.size() | |
q_device = q.device | |
del q,k, km | |
o = torch.empty(q_size, dtype=dtype, device=q_device) | |
if pv_accum_dtype in ["fp32", "fp16+fp32"] and smooth_v: | |
warnings.warn(f"pv_accum_dtype is {pv_accum_dtype}, smooth_v will be ignored.") | |
smooth_v = False | |
if pv_accum_dtype == 'fp32': | |
v = v.to(torch.float16) | |
lse = _qattn_sm80.qk_int8_sv_f16_accum_f32_attn(q_int8, k_int8, v, o, q_scale, k_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse) | |
elif pv_accum_dtype == "fp16": | |
if smooth_v: | |
smoothed_v, vm = sub_mean(v, tensor_layout=tensor_layout) | |
del v | |
lse = _qattn_sm80.qk_int8_sv_f16_accum_f16_fuse_v_mean_attn(q_int8, k_int8, smoothed_v, o, q_scale, k_scale, vm, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse) | |
else: | |
v = v.to(torch.float16) | |
lse = _qattn_sm80.qk_int8_sv_f16_accum_f16_attn(q_int8, k_int8, v, o, q_scale, k_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse) | |
elif pv_accum_dtype == "fp16+fp32": | |
v = v.to(torch.float16) | |
lse = _qattn_sm80.qk_int8_sv_f16_accum_f16_attn_inst_buf(q_int8, k_int8, v, o, q_scale, k_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse) | |
else: | |
raise ValueError(f"Unsupported pv_accum_dtype: {pv_accum_dtype}") | |
o = o[..., :head_dim_og] | |
if return_lse: | |
return o, lse / 1.44269504 + lse_correction * sm_scale if smooth_k else lse / 1.44269504 | |
else: | |
return o | |
def sageattn_qk_int8_pv_fp8_cuda( | |
qkv_list, | |
tensor_layout: str = "HND", | |
is_causal: bool = False, | |
qk_quant_gran: str = "per_thread", | |
sm_scale: Optional[float] = None, | |
pv_accum_dtype: str = "fp32+fp32", | |
smooth_k: bool = True, | |
smooth_v: bool = False, | |
return_lse: bool = False, | |
**kwargs: Any, | |
) -> torch.Tensor: | |
""" | |
SageAttention with INT8 quantization for Q and K, FP8 PV with FP32 accumulation, implemented using CUDA. | |
Parameters | |
---------- | |
q : torch.Tensor | |
The query tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
k : torch.Tensor | |
The key tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
v : torch.Tensor | |
The value tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
tensor_layout : str | |
The tensor layout, either "HND" or "NHD". | |
Default: "HND". | |
is_causal : bool | |
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len. | |
Default: False. | |
qk_quant_gran : str | |
The granularity of quantization for Q and K, either "per_warp" or "per_thread". | |
Default: "per_thread". | |
sm_scale : Optional[float] | |
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``. | |
pv_accum_dtype : str | |
The dtype of the accumulation of the product of the value tensor and the attention weights, either "fp32" or "fp32+fp32". | |
- "fp32": PV accumulation is done in fully in FP32. However, due to the hardware issue, there are only 22 valid bits in the FP32 accumulator. | |
- "fp32+fp32": PV accumulation is done in FP32 (actually FP22), but added to a FP32 buffer every few iterations. This offers a balance between speed and accuracy. | |
Default: "fp32+fp32". | |
smooth_k : bool | |
Whether to smooth the key tensor by subtracting the mean along the sequence dimension. | |
Default: True. | |
smooth_v : bool | |
Whether to smooth the value tensor by subtracting the mean along the sequence dimension. | |
smooth_v will be ignored if pv_accum_dtype is "fp32+fp32". | |
Default: False. | |
return_lse : bool | |
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention. | |
Default: False. | |
Returns | |
------- | |
torch.Tensor | |
The output tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
torch.Tensor | |
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). | |
Shape: ``[batch_size, num_qo_heads, qo_len]``. | |
Only returned if `return_lse` is True. | |
Note | |
---- | |
- ``num_qo_heads`` must be divisible by ``num_kv_heads``. | |
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16`` or ``torch.bfloat16`` | |
- All tensors must be on the same cuda device. | |
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances. | |
""" | |
q, k, v = qkv_list | |
qkv_list.clear() | |
dtype = q.dtype | |
assert SM89_ENABLED, "SM89 kernel is not available. Make sure you GPUs with compute capability 8.9." | |
assert q.is_cuda, "Input tensors must be on cuda." | |
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16" | |
assert qk_quant_gran in ["per_warp", "per_thread"], "qk_quant_gran must be either 'per_warp' or 'per_thread'." | |
assert q.device == k.device == v.device, "All tensors must be on the same device." | |
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype." | |
# FIXME(DefTruth): make sage attention work compatible with distributed | |
# env, for example, xDiT which launch by torchrun. Without this workaround, | |
# sage attention will run into illegal memory access error after first | |
# inference step in distributed env for multi gpus inference. This small | |
# workaround also make sage attention work compatible with torch.compile | |
# through non-fullgraph compile mode. | |
torch.cuda.set_device(v.device) | |
_tensor_layout = 0 if tensor_layout == "NHD" else 1 | |
_is_caual = 1 if is_causal else 0 | |
_qk_quant_gran = 3 if qk_quant_gran == "per_thread" else 2 | |
_return_lse = 1 if return_lse else 0 | |
head_dim_og = q.size(-1) | |
if head_dim_og < 64: | |
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og)) | |
elif head_dim_og > 64 and head_dim_og < 128: | |
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og)) | |
elif head_dim_og > 128: | |
raise ValueError(f"Unsupported head_dim: {head_dim_og}") | |
# assert last dim is contiguous | |
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous." | |
if sm_scale is None: | |
sm_scale = head_dim_og**-0.5 | |
seq_dim = 1 if _tensor_layout == 0 else 2 | |
if smooth_k: | |
km = k.mean(dim=seq_dim, keepdim=True) | |
if return_lse: | |
if tensor_layout == "NHD": | |
lse_correction = torch.matmul(q.transpose(1, 2), km.transpose(1, 2).transpose(2, 3)).squeeze(-1).to(torch.float32) | |
else: | |
lse_correction = torch.matmul(q, km.transpose(2, 3)).squeeze(-1).to(torch.float32) | |
else: | |
km = None | |
if qk_quant_gran == "per_warp": | |
q_int8, q_scale, k_int8, k_scale = per_warp_int8_cuda(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=32, BLKK=64) | |
elif qk_quant_gran == "per_thread": | |
q_int8, q_scale, k_int8, k_scale = per_thread_int8_triton(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=32, BLKK=64, WARPK=64) | |
q_size = q.size() | |
q_device = q.device | |
del q,k,km | |
if pv_accum_dtype == 'fp32+fp32' and smooth_v: | |
warnings.warn("pv_accum_dtype is 'fp32+fp32', smooth_v will be ignored.") | |
smooth_v = False | |
v_fp8, v_scale, vm = per_channel_fp8(v, tensor_layout=tensor_layout, smooth_v=smooth_v) | |
del v | |
o = torch.empty(q_size, dtype=dtype, device=q_device) | |
if pv_accum_dtype == "fp32": | |
if smooth_v: | |
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_fuse_v_mean_attn(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, vm, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse) | |
else: | |
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse) | |
elif pv_accum_dtype == "fp32+fp32": | |
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn_inst_buf(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse) | |
o = o[..., :head_dim_og] | |
if return_lse: | |
return o, lse / 1.44269504 + lse_correction * sm_scale if smooth_k else lse / 1.44269504 | |
else: | |
return o | |
def sageattn_qk_int8_pv_fp8_window_cuda( | |
qkv_list, | |
# q: torch.Tensor, | |
# k: torch.Tensor, | |
# v: torch.Tensor, | |
tensor_layout: str = "HND", | |
is_causal: bool = False, | |
qk_quant_gran: str = "per_thread", | |
sm_scale: Optional[float] = None, | |
pv_accum_dtype: str = "fp32+fp32", | |
smooth_k: bool = True, | |
smooth_v: bool = False, | |
return_lse: bool = False, | |
window = -1, | |
**kwargs: Any, | |
) -> torch.Tensor: | |
""" | |
SageAttention with INT8 quantization for Q and K, FP8 PV with FP32 accumulation, implemented using CUDA. | |
Parameters | |
---------- | |
q : torch.Tensor | |
The query tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
k : torch.Tensor | |
The key tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
v : torch.Tensor | |
The value tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
tensor_layout : str | |
The tensor layout, either "HND" or "NHD". | |
Default: "HND". | |
is_causal : bool | |
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len. | |
Default: False. | |
qk_quant_gran : str | |
The granularity of quantization for Q and K, either "per_warp" or "per_thread". | |
Default: "per_thread". | |
sm_scale : Optional[float] | |
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``. | |
pv_accum_dtype : str | |
The dtype of the accumulation of the product of the value tensor and the attention weights, either "fp32" or "fp32+fp32". | |
- "fp32": PV accumulation is done in fully in FP32. However, due to the hardware issue, there are only 22 valid bits in the FP32 accumulator. | |
- "fp32+fp32": PV accumulation is done in FP32 (actually FP22), but added to a FP32 buffer every few iterations. This offers a balance between speed and accuracy. | |
Default: "fp32+fp32". | |
smooth_k : bool | |
Whether to smooth the key tensor by subtracting the mean along the sequence dimension. | |
Default: True. | |
smooth_v : bool | |
Whether to smooth the value tensor by subtracting the mean along the sequence dimension. | |
smooth_v will be ignored if pv_accum_dtype is "fp32+fp32". | |
Default: False. | |
return_lse : bool | |
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention. | |
Default: False. | |
Returns | |
------- | |
torch.Tensor | |
The output tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
torch.Tensor | |
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). | |
Shape: ``[batch_size, num_qo_heads, qo_len]``. | |
Only returned if `return_lse` is True. | |
Note | |
---- | |
- ``num_qo_heads`` must be divisible by ``num_kv_heads``. | |
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16`` or ``torch.bfloat16`` | |
- All tensors must be on the same cuda device. | |
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances. | |
""" | |
q,k,v = qkv_list | |
qkv_list.clear() | |
dtype = q.dtype | |
assert SM89_ENABLED, "SM89 kernel is not available. Make sure you GPUs with compute capability 8.9." | |
assert q.is_cuda, "Input tensors must be on cuda." | |
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16" | |
assert qk_quant_gran in ["per_warp", "per_thread"], "qk_quant_gran must be either 'per_warp' or 'per_thread'." | |
assert q.device == k.device == v.device, "All tensors must be on the same device." | |
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype." | |
# FIXME(DefTruth): make sage attention work compatible with distributed | |
# env, for example, xDiT which launch by torchrun. Without this workaround, | |
# sage attention will run into illegal memory access error after first | |
# inference step in distributed env for multi gpus inference. This small | |
# workaround also make sage attention work compatible with torch.compile | |
# through non-fullgraph compile mode. | |
torch.cuda.set_device(v.device) | |
_tensor_layout = 0 if tensor_layout == "NHD" else 1 | |
_is_caual = 1 if is_causal else 0 | |
_qk_quant_gran = 3 if qk_quant_gran == "per_thread" else 2 | |
_return_lse = 1 if return_lse else 0 | |
head_dim_og = q.size(-1) | |
if head_dim_og < 64: | |
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og)) | |
elif head_dim_og > 64 and head_dim_og < 128: | |
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og)) | |
elif head_dim_og > 128: | |
raise ValueError(f"Unsupported head_dim: {head_dim_og}") | |
# assert last dim is contiguous | |
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous." | |
if sm_scale is None: | |
sm_scale = head_dim_og**-0.5 | |
seq_dim = 1 if _tensor_layout == 0 else 2 | |
if smooth_k: | |
km = k.mean(dim=seq_dim, keepdim=True) | |
if return_lse: | |
if tensor_layout == "NHD": | |
lse_correction = torch.matmul(q.transpose(1, 2), km.transpose(1, 2).transpose(2, 3)).squeeze(-1).to(torch.float32) | |
else: | |
lse_correction = torch.matmul(q, km.transpose(2, 3)).squeeze(-1).to(torch.float32) | |
else: | |
km = None | |
if qk_quant_gran == "per_warp": | |
q_int8, q_scale, k_int8, k_scale = per_warp_int8_cuda(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=32, BLKK=64) | |
elif qk_quant_gran == "per_thread": | |
q_int8, q_scale, k_int8, k_scale = per_thread_int8_triton(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=32, BLKK=64, WARPK=64) | |
q_size = q.size() | |
q_device = q.device | |
del q,k | |
if pv_accum_dtype == 'fp32+fp32' and smooth_v: | |
warnings.warn("pv_accum_dtype is 'fp32+fp32', smooth_v will be ignored.") | |
smooth_v = False | |
v_fp8, v_scale, vm = per_channel_fp8(v, tensor_layout=tensor_layout, smooth_v=smooth_v) | |
del v | |
o = torch.empty(q_size, dtype=dtype, device=q_device) | |
if pv_accum_dtype == "fp32": | |
if smooth_v: | |
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_fuse_v_mean_attn(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, vm, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse, window) | |
else: | |
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse, window) | |
elif pv_accum_dtype == "fp32+fp32": | |
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn_inst_buf(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse, window) | |
o = o[..., :head_dim_og] | |
if return_lse: | |
return o, lse / 1.44269504 + lse_correction * sm_scale if smooth_k else lse / 1.44269504 | |
else: | |
return o | |
def sageattn_qk_int8_pv_fp8_cuda_sm90( | |
qkv_list, | |
# q: torch.Tensor, | |
# k: torch.Tensor, | |
# v: torch.Tensor, | |
tensor_layout: str = "HND", | |
is_causal: bool = False, | |
qk_quant_gran: str = "per_thread", | |
sm_scale: Optional[float] = None, | |
pv_accum_dtype: str = "fp32+fp32", | |
smooth_k: bool = True, | |
return_lse: bool = False, | |
**kwargs: Any, | |
) -> torch.Tensor: | |
""" | |
SageAttention with INT8 quantization for Q and K, FP8 PV with FP32 accumulation, implemented using CUDA. | |
Parameters | |
---------- | |
q : torch.Tensor | |
The query tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
k : torch.Tensor | |
The key tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
v : torch.Tensor | |
The value tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``. | |
tensor_layout : str | |
The tensor layout, either "HND" or "NHD". | |
Default: "HND". | |
is_causal : bool | |
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len. | |
Default: False. | |
qk_quant_gran : str | |
The granularity of quantization for Q and K, either "per_warp" or "per_thread". | |
Default: "per_thread". | |
sm_scale : Optional[float] | |
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``. | |
pv_accum_dtype : str | |
The dtype of the accumulation of the product of the value tensor and the attention weights, either "fp32" or "fp32+fp32". | |
- "fp32": PV accumulation is done in fully in FP32. However, due to the hardware issue, there are only 22 valid bits in the FP32 accumulator. | |
- "fp32+fp32": PV accumulation is done in FP32 (actually FP22), but added to a FP32 buffer every few iterations. This offers a balance between speed and accuracy. | |
Default: "fp32+fp32". | |
smooth_k : bool | |
Whether to smooth the key tensor by subtracting the mean along the sequence dimension. | |
Default: True. | |
return_lse : bool | |
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention. | |
Default: False. | |
Returns | |
------- | |
torch.Tensor | |
The output tensor. Shape: | |
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``. | |
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``. | |
torch.Tensor | |
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor). | |
Shape: ``[batch_size, num_qo_heads, qo_len]``. | |
Only returned if `return_lse` is True. | |
Note | |
---- | |
- ``num_qo_heads`` must be divisible by ``num_kv_heads``. | |
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16`` or ``torch.bfloat16`` | |
- All tensors must be on the same cuda device. | |
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances. | |
""" | |
q,k,v = qkv_list | |
qkv_list.clear() | |
dtype = q.dtype | |
assert SM90_ENABLED, "SM90 kernel is not available. Make sure you GPUs with compute capability 9.0." | |
assert q.is_cuda, "Input tensors must be on cuda." | |
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16" | |
assert qk_quant_gran in ["per_warp", "per_thread"], "qk_quant_gran must be either 'per_warp' or 'per_thread'." | |
assert q.device == k.device == v.device, "All tensors must be on the same device." | |
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype." | |
torch.cuda.set_device(v.device) | |
_tensor_layout = 0 if tensor_layout == "NHD" else 1 | |
_is_caual = 1 if is_causal else 0 | |
_qk_quant_gran = 3 if qk_quant_gran == "per_thread" else 2 | |
_return_lse = 1 if return_lse else 0 | |
head_dim_og = q.size(-1) | |
if head_dim_og < 64: | |
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og)) | |
elif head_dim_og > 64 and head_dim_og < 128: | |
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og)) | |
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og)) | |
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og)) | |
elif head_dim_og > 128: | |
raise ValueError(f"Unsupported head_dim: {head_dim_og}") | |
# assert last dim is contiguous | |
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous." | |
if sm_scale is None: | |
sm_scale = head_dim_og**-0.5 | |
seq_dim = 1 if _tensor_layout == 0 else 2 | |
if smooth_k: | |
km = k.mean(dim=seq_dim, keepdim=True) | |
if return_lse: | |
if tensor_layout == "NHD": | |
lse_correction = torch.matmul(q.transpose(1, 2), km.transpose(1, 2).transpose(2, 3)).squeeze(-1).to(torch.float32) | |
else: | |
lse_correction = torch.matmul(q, km.transpose(2, 3)).squeeze(-1).to(torch.float32) | |
else: | |
km = None | |
if qk_quant_gran == "per_warp": | |
q_int8, q_scale, k_int8, k_scale = per_warp_int8_cuda(q, k, km, tensor_layout=tensor_layout, BLKQ=64, WARPQ=16, BLKK=128) | |
elif qk_quant_gran == "per_thread": | |
q_int8, q_scale, k_int8, k_scale = per_thread_int8_triton(q, k, km, tensor_layout=tensor_layout, BLKQ=64, WARPQ=16, BLKK=128, WARPK=128) | |
q_size = q.size() | |
kv_len = k.size(seq_dim) | |
q_device = q.device | |
del q,k | |
# pad v to multiple of 128 | |
# TODO: modify per_channel_fp8 kernel to handle this | |
v_pad_len = 128 - (kv_len % 128) if kv_len % 128 != 0 else 0 | |
if v_pad_len > 0: | |
if tensor_layout == "HND": | |
v = torch.cat([v, torch.zeros(v.size(0), v.size(1), v_pad_len, v.size(3), dtype=v.dtype, device=v.device)], dim=2) | |
else: | |
v = torch.cat([v, torch.zeros(v.size(0), v_pad_len, v.size(2), v.size(3), dtype=v.dtype, device=v.device)], dim=1) | |
v_fp8, v_scale, _ = per_channel_fp8(v, tensor_layout=tensor_layout, smooth_v=False) | |
del v | |
o = torch.empty(q_size, dtype=dtype, device=q_device) | |
if pv_accum_dtype == "fp32": | |
raise NotImplementedError("Please use pv_accum_dtype='fp32+fp32' for sm90.") | |
lse = _qattn_sm90.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse) | |
elif pv_accum_dtype == "fp32+fp32": | |
lse = _qattn_sm90.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn_inst_buf(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse) | |
o = o[..., :head_dim_og] | |
if return_lse: | |
return o, lse / 1.44269504 + lse_correction * sm_scale if smooth_k else lse / 1.44269504 | |
else: | |
return o |