Spaces:
Running
Running
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import argparse | |
import binascii | |
import os | |
import os.path as osp | |
import torchvision.transforms.functional as TF | |
import torch.nn.functional as F | |
import imageio | |
import torch | |
import decord | |
import torchvision | |
from PIL import Image | |
import numpy as np | |
from rembg import remove, new_session | |
import random | |
__all__ = ['cache_video', 'cache_image', 'str2bool'] | |
from PIL import Image | |
def seed_everything(seed: int): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(seed) | |
if torch.backends.mps.is_available(): | |
torch.mps.manual_seed(seed) | |
def resample(video_fps, video_frames_count, max_target_frames_count, target_fps, start_target_frame ): | |
import math | |
if video_fps < target_fps : | |
video_fps = target_fps | |
video_frame_duration = 1 /video_fps | |
target_frame_duration = 1 / target_fps | |
target_time = start_target_frame * target_frame_duration | |
frame_no = math.ceil(target_time / video_frame_duration) | |
cur_time = frame_no * video_frame_duration | |
frame_ids =[] | |
while True: | |
if max_target_frames_count != 0 and len(frame_ids) >= max_target_frames_count : | |
break | |
diff = round( (target_time -cur_time) / video_frame_duration , 5) | |
add_frames_count = math.ceil( diff) | |
frame_no += add_frames_count | |
if frame_no >= video_frames_count: | |
break | |
frame_ids.append(frame_no) | |
cur_time += add_frames_count * video_frame_duration | |
target_time += target_frame_duration | |
frame_ids = frame_ids[:max_target_frames_count] | |
return frame_ids | |
def get_video_frame(file_name, frame_no): | |
decord.bridge.set_bridge('torch') | |
reader = decord.VideoReader(file_name) | |
frame = reader.get_batch([frame_no]).squeeze(0) | |
img = Image.fromarray(frame.numpy().astype(np.uint8)) | |
return img | |
def resize_lanczos(img, h, w): | |
img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) | |
img = img.resize((w,h), resample=Image.Resampling.LANCZOS) | |
return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0) | |
def remove_background(img, session=None): | |
if session ==None: | |
session = new_session() | |
img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) | |
img = remove(img, session=session, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB') | |
return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0) | |
def convert_tensor_to_image(t, frame_no = -1): | |
t = t[:, frame_no] if frame_no >= 0 else t | |
return Image.fromarray(t.clone().add_(1.).mul_(127.5).permute(1,2,0).to(torch.uint8).cpu().numpy()) | |
def save_image(tensor_image, name, frame_no = -1): | |
convert_tensor_to_image(tensor_image, frame_no).save(name) | |
def get_outpainting_full_area_dimensions(frame_height,frame_width, outpainting_dims): | |
outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims | |
frame_height = int(frame_height * (100 + outpainting_top + outpainting_bottom) / 100) | |
frame_width = int(frame_width * (100 + outpainting_left + outpainting_right) / 100) | |
return frame_height, frame_width | |
def get_outpainting_frame_location(final_height, final_width, outpainting_dims, block_size = 8): | |
outpainting_top, outpainting_bottom, outpainting_left, outpainting_right= outpainting_dims | |
raw_height = int(final_height / ((100 + outpainting_top + outpainting_bottom) / 100)) | |
height = int(raw_height / block_size) * block_size | |
extra_height = raw_height - height | |
raw_width = int(final_width / ((100 + outpainting_left + outpainting_right) / 100)) | |
width = int(raw_width / block_size) * block_size | |
extra_width = raw_width - width | |
margin_top = int(outpainting_top/(100 + outpainting_top + outpainting_bottom) * final_height) | |
if extra_height != 0 and (outpainting_top + outpainting_bottom) != 0: | |
margin_top += int(outpainting_top / (outpainting_top + outpainting_bottom) * extra_height) | |
if (margin_top + height) > final_height or outpainting_bottom == 0: margin_top = final_height - height | |
margin_left = int(outpainting_left/(100 + outpainting_left + outpainting_right) * final_width) | |
if extra_width != 0 and (outpainting_left + outpainting_right) != 0: | |
margin_left += int(outpainting_left / (outpainting_left + outpainting_right) * extra_height) | |
if (margin_left + width) > final_width or outpainting_right == 0: margin_left = final_width - width | |
return height, width, margin_top, margin_left | |
def calculate_new_dimensions(canvas_height, canvas_width, height, width, fit_into_canvas, block_size = 16): | |
if fit_into_canvas == None: | |
return height, width | |
if fit_into_canvas: | |
scale1 = min(canvas_height / height, canvas_width / width) | |
scale2 = min(canvas_width / height, canvas_height / width) | |
scale = max(scale1, scale2) | |
else: | |
scale = (canvas_height * canvas_width / (height * width))**(1/2) | |
new_height = round( height * scale / block_size) * block_size | |
new_width = round( width * scale / block_size) * block_size | |
return new_height, new_width | |
def resize_and_remove_background(img_list, budget_width, budget_height, rm_background, fit_into_canvas = False ): | |
if rm_background > 0: | |
session = new_session() | |
output_list =[] | |
for i, img in enumerate(img_list): | |
width, height = img.size | |
if fit_into_canvas: | |
white_canvas = np.ones((budget_height, budget_width, 3), dtype=np.uint8) * 255 | |
scale = min(budget_height / height, budget_width / width) | |
new_height = int(height * scale) | |
new_width = int(width * scale) | |
resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) | |
top = (budget_height - new_height) // 2 | |
left = (budget_width - new_width) // 2 | |
white_canvas[top:top + new_height, left:left + new_width] = np.array(resized_image) | |
resized_image = Image.fromarray(white_canvas) | |
else: | |
scale = (budget_height * budget_width / (height * width))**(1/2) | |
new_height = int( round(height * scale / 16) * 16) | |
new_width = int( round(width * scale / 16) * 16) | |
resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS) | |
if rm_background == 1 or rm_background == 2 and i > 0 : | |
# resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1,alpha_matting_background_threshold = 70, alpha_foreground_background_threshold = 100, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB') | |
resized_image = remove(resized_image, session=session, alpha_matting_erode_size = 1, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB') | |
output_list.append(resized_image) #alpha_matting_background_threshold = 30, alpha_foreground_background_threshold = 200, | |
return output_list | |
def rand_name(length=8, suffix=''): | |
name = binascii.b2a_hex(os.urandom(length)).decode('utf-8') | |
if suffix: | |
if not suffix.startswith('.'): | |
suffix = '.' + suffix | |
name += suffix | |
return name | |
def cache_video(tensor, | |
save_file=None, | |
fps=30, | |
suffix='.mp4', | |
nrow=8, | |
normalize=True, | |
value_range=(-1, 1), | |
retry=5): | |
# cache file | |
cache_file = osp.join('/tmp', rand_name( | |
suffix=suffix)) if save_file is None else save_file | |
# save to cache | |
error = None | |
for _ in range(retry): | |
try: | |
# preprocess | |
tensor = tensor.clamp(min(value_range), max(value_range)) | |
tensor = torch.stack([ | |
torchvision.utils.make_grid( | |
u, nrow=nrow, normalize=normalize, value_range=value_range) | |
for u in tensor.unbind(2) | |
], | |
dim=1).permute(1, 2, 3, 0) | |
tensor = (tensor * 255).type(torch.uint8).cpu() | |
# write video | |
writer = imageio.get_writer( | |
cache_file, fps=fps, codec='libx264', quality=8) | |
for frame in tensor.numpy(): | |
writer.append_data(frame) | |
writer.close() | |
return cache_file | |
except Exception as e: | |
error = e | |
continue | |
else: | |
print(f'cache_video failed, error: {error}', flush=True) | |
return None | |
def cache_image(tensor, | |
save_file, | |
nrow=8, | |
normalize=True, | |
value_range=(-1, 1), | |
retry=5): | |
# cache file | |
suffix = osp.splitext(save_file)[1] | |
if suffix.lower() not in [ | |
'.jpg', '.jpeg', '.png', '.tiff', '.gif', '.webp' | |
]: | |
suffix = '.png' | |
# save to cache | |
error = None | |
for _ in range(retry): | |
try: | |
tensor = tensor.clamp(min(value_range), max(value_range)) | |
torchvision.utils.save_image( | |
tensor, | |
save_file, | |
nrow=nrow, | |
normalize=normalize, | |
value_range=value_range) | |
return save_file | |
except Exception as e: | |
error = e | |
continue | |
def str2bool(v): | |
""" | |
Convert a string to a boolean. | |
Supported true values: 'yes', 'true', 't', 'y', '1' | |
Supported false values: 'no', 'false', 'f', 'n', '0' | |
Args: | |
v (str): String to convert. | |
Returns: | |
bool: Converted boolean value. | |
Raises: | |
argparse.ArgumentTypeError: If the value cannot be converted to boolean. | |
""" | |
if isinstance(v, bool): | |
return v | |
v_lower = v.lower() | |
if v_lower in ('yes', 'true', 't', 'y', '1'): | |
return True | |
elif v_lower in ('no', 'false', 'f', 'n', '0'): | |
return False | |
else: | |
raise argparse.ArgumentTypeError('Boolean value expected (True/False)') | |
import sys, time | |
# Global variables to track download progress | |
_start_time = None | |
_last_time = None | |
_last_downloaded = 0 | |
_speed_history = [] | |
_update_interval = 0.5 # Update speed every 0.5 seconds | |
def progress_hook(block_num, block_size, total_size, filename=None): | |
""" | |
Simple progress bar hook for urlretrieve | |
Args: | |
block_num: Number of blocks downloaded so far | |
block_size: Size of each block in bytes | |
total_size: Total size of the file in bytes | |
filename: Name of the file being downloaded (optional) | |
""" | |
global _start_time, _last_time, _last_downloaded, _speed_history, _update_interval | |
current_time = time.time() | |
downloaded = block_num * block_size | |
# Initialize timing on first call | |
if _start_time is None or block_num == 0: | |
_start_time = current_time | |
_last_time = current_time | |
_last_downloaded = 0 | |
_speed_history = [] | |
# Calculate download speed only at specified intervals | |
speed = 0 | |
if current_time - _last_time >= _update_interval: | |
if _last_time > 0: | |
current_speed = (downloaded - _last_downloaded) / (current_time - _last_time) | |
_speed_history.append(current_speed) | |
# Keep only last 5 speed measurements for smoothing | |
if len(_speed_history) > 5: | |
_speed_history.pop(0) | |
# Average the recent speeds for smoother display | |
speed = sum(_speed_history) / len(_speed_history) | |
_last_time = current_time | |
_last_downloaded = downloaded | |
elif _speed_history: | |
# Use the last calculated average speed | |
speed = sum(_speed_history) / len(_speed_history) | |
# Format file sizes and speed | |
def format_bytes(bytes_val): | |
for unit in ['B', 'KB', 'MB', 'GB']: | |
if bytes_val < 1024: | |
return f"{bytes_val:.1f}{unit}" | |
bytes_val /= 1024 | |
return f"{bytes_val:.1f}TB" | |
file_display = filename if filename else "Unknown file" | |
if total_size <= 0: | |
# If total size is unknown, show downloaded bytes | |
speed_str = f" @ {format_bytes(speed)}/s" if speed > 0 else "" | |
line = f"\r{file_display}: {format_bytes(downloaded)}{speed_str}" | |
# Clear any trailing characters by padding with spaces | |
sys.stdout.write(line.ljust(80)) | |
sys.stdout.flush() | |
return | |
downloaded = block_num * block_size | |
percent = min(100, (downloaded / total_size) * 100) | |
# Create progress bar (40 characters wide to leave room for other info) | |
bar_length = 40 | |
filled = int(bar_length * percent / 100) | |
bar = '█' * filled + '░' * (bar_length - filled) | |
# Format file sizes and speed | |
def format_bytes(bytes_val): | |
for unit in ['B', 'KB', 'MB', 'GB']: | |
if bytes_val < 1024: | |
return f"{bytes_val:.1f}{unit}" | |
bytes_val /= 1024 | |
return f"{bytes_val:.1f}TB" | |
speed_str = f" @ {format_bytes(speed)}/s" if speed > 0 else "" | |
# Display progress with filename first | |
line = f"\r{file_display}: [{bar}] {percent:.1f}% ({format_bytes(downloaded)}/{format_bytes(total_size)}){speed_str}" | |
# Clear any trailing characters by padding with spaces | |
sys.stdout.write(line.ljust(100)) | |
sys.stdout.flush() | |
# Print newline when complete | |
if percent >= 100: | |
print() | |
# Wrapper function to include filename in progress hook | |
def create_progress_hook(filename): | |
"""Creates a progress hook with the filename included""" | |
global _start_time, _last_time, _last_downloaded, _speed_history | |
# Reset timing variables for new download | |
_start_time = None | |
_last_time = None | |
_last_downloaded = 0 | |
_speed_history = [] | |
def hook(block_num, block_size, total_size): | |
return progress_hook(block_num, block_size, total_size, filename) | |
return hook | |