PhoenixStormJr's picture
Update onnx_inference_demo.py
7819a94 verified
raw
history blame contribute delete
750 Bytes
import soundfile
from infer_pack.onnx_inference import OnnxRVC
hop_size = 512
sampling_rate = 40000 # Sampling rate
f0_up_key = 0 # rising and falling tones
sid = 0 # Role ID
f0_method = "dio" # F0 extraction algorithm
model_path = "ShirohaRVC.onnx" # full path to model
vec_name = "vec-256-layer-9" # The internal automatic completion is f"pretrained/{vec_name}.onnx" requires the onnx vec model
wav_path = "123.wav" # Input path or ByteIO instance
out_path = "out.wav" # Output path or ByteIO instance
model = OnnxRVC(
model_path, vec_path=vec_name, sr=sampling_rate, hop_size=hop_size, device="cuda"
)
audio = model.inference(wav_path, sid, f0_method=f0_method, f0_up_key=f0_up_key)
soundfile.write(out_path, audio, sampling_rate)