""" Format: directly use cid as the built-in index position; if aid cannot be put in, use the dictionary to search, there are only 50,000 of them anyway """ import faiss, numpy as np, os # ############ If it is an original feature, you need to write save first inp_root = r"E:\codes\py39\dataset\mi\2-co256" npys = [] for name in sorted(list(os.listdir(inp_root))): phone = np.load("%s/%s" % (inp_root, name)) npys.append(phone) big_npy = np.concatenate(npys, 0) print(big_npy.shape) # (6196072, 192)#fp32#4.43G np.save("infer/big_src_feature_mi.npy", big_npy) ##################train+add # big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy") print(big_npy.shape) index = faiss.index_factory(256, "IVF512,Flat") # mi print("training") index_ivf = faiss.extract_index_ivf(index) # index_ivf.nprobe = 9 index.train(big_npy) faiss.write_index(index, "infer/trained_IVF512_Flat_mi_baseline_src_feat.index") print("adding") index.add(big_npy) faiss.write_index(index, "infer/added_IVF512_Flat_mi_baseline_src_feat.index") """ Size (all FP32) big_src_feature 2.95G (3098036, 256) big_emb 4.43G (6196072, 192) The double of big_emb is because the feature needs to be repeated and then pitched """