Vega / app.py
Polarisailabs's picture
Upload app.py
544863c verified
# -*- coding: utf-8 -*-
# Install required libraries if running outside Colab
# !pip install gradio yt-dlp moviepy pillow speechrecognition llama-index lancedb google-generativeai
import gradio as gr
from moviepy import VideoFileClip
from pathlib import Path
import speech_recognition as sr
from PIL import Image
import os
import shutil
import json
import matplotlib.pyplot as plt
# Add your existing methods here (download_video, video_to_images, video_to_audio, audio_to_text, prepare_video...)
def plot_images(image_paths):
images_shown = 0
plt.figure(figsize=(16, 9))
img_files = []
for img_path in image_paths:
if os.path.isfile(img_path):
img_files.append(img_path)
images_shown += 1
if images_shown >= 7:
break
return img_files
def download_video(video_url, output_video_path="./video_data/"):
ydl_opts = {
"format": "bestvideo+bestaudio/best",
"merge_output_format": "mp4",
"outtmpl": f"{output_video_path}/input_vid.mp4",
"noplaylist": True,
"quiet": False,
# Uncomment and set your cookie file path if required
# "cookiefile": "cookies.txt",
}
Path(output_video_path).mkdir(parents=True, exist_ok=True)
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(video_url, download=True)
info = ydl.sanitize_info(info)
return {
"title": info.get("title"),
"uploader": info.get("uploader"),
"views": info.get("view_count"),
}
def video_to_images(video_path, output_folder):
Path(output_folder).mkdir(parents=True, exist_ok=True)
clip = VideoFileClip(video_path)
clip.write_images_sequence(
os.path.join(output_folder, "frame%04d.png"), fps=0.2
)
def video_to_audio(video_path, output_audio_path):
clip = VideoFileClip(video_path)
audio = clip.audio
audio.write_audiofile(output_audio_path)
def audio_to_text(audio_path):
recognizer = sr.Recognizer()
try:
with sr.AudioFile(audio_path) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
return text
except sr.UnknownValueError:
print("Google Speech Recognition could not understand the audio.")
except sr.RequestError as e:
print(f"Could not request results: {e}")
return None
def prepare_video(video_url,
output_video_path="./video_data/",
output_folder="./mixed_data/",
output_audio_path="./mixed_data/output_audio.wav"):
filepath = os.path.join(output_video_path, "input_vid.mp4")
#meta = download_video(video_url, output_video_path)
video_to_images(filepath, output_folder)
video_to_audio(filepath, output_audio_path)
text_data = audio_to_text(output_audio_path)
text_path = os.path.join(output_folder, "output_text.txt")
with open(text_path, "w") as file:
file.write(text_data if text_data else "")
os.remove(output_audio_path)
meta = {
"title": "test",
"uploader": "uploader",
"views": "view_count",
}
return meta, text_data
from llama_index.core.indices import MultiModalVectorStoreIndex
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.vector_stores.lancedb import LanceDBVectorStore
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
def create_vector_db(image_txt_folder_path: str):
text_store = LanceDBVectorStore(uri="lancedb", table_name="text_collection")
image_store = LanceDBVectorStore(uri="lancedb", table_name="image_collection")
storage_context = StorageContext.from_defaults(
vector_store=text_store, image_store=image_store
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
documents = SimpleDirectoryReader(image_txt_folder_path).load_data()
index = MultiModalVectorStoreIndex.from_documents(
documents,
storage_context=storage_context,
)
retriever_engine = index.as_retriever(
similarity_top_k=2, image_similarity_top_k=3
)
return retriever_engine
from llama_index.core.schema import ImageNode
def retrieve(retriever_engine, query_str):
retrieval_results = retriever_engine.retrieve(query_str)
retrieved_image = []
retrieved_text = []
for res_node in retrieval_results:
if isinstance(res_node.node, ImageNode):
retrieved_image.append(res_node.node.metadata["file_path"])
else:
retrieved_text.append(res_node.text)
return retrieved_image, retrieved_text
qa_tmpl_str = (
"Given the provided information, including relevant images and retrieved context from the video, \
accurately and precisely answer the query without any additional prior knowledge.\n"
"Please ensure honesty and responsibility, refraining from any racist or sexist remarks.\n"
"---------------------\n"
"Context: {context_str}\n"
"Metadata for video: {metadata_str} \n"
"---------------------\n"
"Query: {query_str}\n"
"Answer: "
)
import google.generativeai as genai
def get_response(retriever_engine, query_str, metadata_str, output_folder):
img, txt = retrieve(retriever_engine=retriever_engine, query_str=query_str)
context_str = "".join(txt)
prompt = qa_tmpl_str.format(
context_str=context_str, query_str=query_str, metadata_str=metadata_str
)
GOOGLE_API_KEY = "AIzaSyD0sn-z1CmYcyhzSyE_4t2_nSQFGmnKFWc"
genai.configure(api_key=GOOGLE_API_KEY)
gemini_model = genai.GenerativeModel('gemini-1.5-flash-latest')
content_parts = [prompt]
image_paths = []
for img_path in img:
try:
image = Image.open(img_path)
content_parts.append(image)
image_paths.append(img_path)
except Exception as e:
print(f"Error loading image {img_path}: {e}")
response_1 = gemini_model.generate_content(content_parts)
result_text = response_1.text if hasattr(response_1, 'text') else str(response_1)
return result_text, image_paths
# Gradio interface function
def gradio_chat(query):
output_video_path = "./video_data/"
output_folder = "./mixed_data/"
output_audio_path = "./mixed_data/output_audio.wav"
video_url=""
try:
metadata_vid, text_data = prepare_video(
video_url, output_video_path, output_folder, output_audio_path
)
metadata_str = json.dumps(metadata_vid)
retriever_engine = create_vector_db(output_folder)
result_text, image_paths = get_response(
retriever_engine, query, metadata_str, output_folder
)
# Cleanup
#if os.path.exists(output_video_path):
# shutil.rmtree(output_video_path)
#if os.path.exists(output_folder):
# shutil.rmtree(output_folder)
# Gradio can return text plus images (as list of file paths)
return result_text, image_paths
except Exception as e:
return f"Error: {str(e)}", []
# Gradio UI
gradio_ui = gr.Interface(
fn=gradio_chat,
inputs=[
gr.Textbox(label="Query"),
],
outputs=[
gr.Textbox(label="Chat Response"),
gr.Gallery(label="Relevant Images", allow_preview=True),
],
title="",
description=""
)
if __name__ == "__main__":
gradio_ui.launch(share=True)