File size: 7,246 Bytes
48ec4db
 
 
 
8da3417
48ec4db
 
 
 
 
 
 
 
 
 
 
 
 
d2b3480
48ec4db
d2b3480
48ec4db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8686c8
 
 
 
48ec4db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2b3480
 
 
 
 
 
48ec4db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
This file consolidates parameters for logging, database connections, model paths, API settings, and security.
"""
from pydantic_settings import BaseSettings, SettingsConfigDict
from aiologger import Logger
from aiologger.handlers.streams import AsyncStreamHandler
from pydantic import BaseModel, Field, computed_field
from aiologger.formatters.base import Formatter
from typing import Callable, List, Optional
from datetime import timedelta
from dotenv import load_dotenv
from celery import Celery
from pathlib import Path
import asyncio
import sys
import os


# os.environ.pop("DATABASE_URL", None)
BASE_DIR = Path(__file__).resolve().parent.parent
# load_dotenv(dotenv_path=BASE_DIR / ".env")


class QdrantSettings(BaseModel):
    host: str = Field("localhost", validation_alias="LOCAL_HOST")
    port: int = Field(6334, validation_alias="LOCAL_PORT")
    prefer_grpc: bool = Field(True, validation_alias="gRPC")


class ModelsSettings(BaseModel):
    embedder_model: str = "all-MiniLM-L6-v2"
    reranker_model: str = "cross-encoder/ms-marco-MiniLM-L6-v2"


class LocalLLMSettings(BaseModel):
    model_path_or_repo_id: str = "TheBloke/Mistral-7B-v0.1-GGUF"
    model_file: str = "mistral-7b-v0.1.Q5_K_S.gguf"
    model_type: str = "mistral"

    gpu_layers: Optional[int] = None
    threads: int = 8
    context_length: int = 4096
    mlock: bool = True  # Locks the model into RAM to prevent swapping


class GenerationSettings(BaseModel):
    last_n_tokens: int = (
        128  # The most recent of tokens that will be penalized (if it was repeated)
    )
    temperature: float = (
        0.3  # Controls the randomness of output. Higher value - higher randomness
    )
    repetition_penalty: float = 1.2


class TextSplitterSettings(BaseModel):
    chunk_size: int = 1000  # The maximum size of chunk
    chunk_overlap: int = 100
    length_function: Callable = len  # Function to measure chunk length
    is_separator_regex: bool = False
    add_start_index: bool = True


class APISettings(BaseModel):
    app: str = "app.api.api:api"
    host: str = "0.0.0.0"
    port: int = 7860
    workers: int = 1
    reload: bool = False


class GeminiSettings(BaseModel):
    temperature: float = 0.6
    top_p: float = 0.8
    top_k: int = 20
    candidate_count: int = None
    seed: int = 5
    max_output_tokens: int = 1001
    stop_sequences: List[str] = Field(default_factory=lambda: ["STOP!"])
    presence_penalty: float = 0.0
    frequency_penalty: float = 0.0


class GeminiEmbeddingSettings(BaseModel):
    output_dimensionality: int = 382
    task_type: str = "retrieval_document"


class GeminiWrapperSettings(BaseModel):
    temperature: float = 0.0
    top_p: float = 0.95
    top_k: int = 20
    candidate_count: int = 1
    seed: int = 5
    max_output_tokens: int = 100
    stop_sequences: List[str] = Field(default_factory=lambda: ["STOP!"])
    presence_penalty: float = 0.0
    frequency_penalty: float = 0.0


class PostgresSettings(BaseModel):
    url: str = os.environ["DATABASE_URL"]
    echo: bool = False
    pool_size: int = 5
    max_overflow: int = 10


class RedisSettings(BaseModel):
    host: str = os.environ["REDIS_HOST"]
    port: int = os.environ["REDIS_PORT"]
    password: str = os.environ["REDIS_PASSWORD"]
    decode_responses: bool = True
    username: str = "default"


class Settings(BaseSettings):
    # model_config = SettingsConfigDict(
    #     env_file=".env",
    #     env_file_encoding="utf-8",
    #     env_nested_delimiter="_",
    #     extra="ignore"
    # )

    qdrant: QdrantSettings = Field(default_factory=QdrantSettings)
    local_llm: LocalLLMSettings = Field(default_factory=LocalLLMSettings)
    models: ModelsSettings = Field(default_factory=ModelsSettings)
    local_generation: GenerationSettings = Field(default_factory=GenerationSettings)
    text_splitter: TextSplitterSettings = Field(default_factory=TextSplitterSettings)
    api: APISettings = Field(default_factory=APISettings)
    gemini_generation: GeminiSettings = Field(default_factory=GeminiSettings)
    gemini_embedding: GeminiEmbeddingSettings = Field(
        default_factory=GeminiEmbeddingSettings
    )
    gemini_wrapper: GeminiWrapperSettings = Field(
        default_factory=GeminiWrapperSettings
    )
    postgres: PostgresSettings = Field(default_factory=PostgresSettings)
    redis: RedisSettings = Field(default_factory=RedisSettings)
    max_delta: float = (
        0.15  # defines what is the minimum boundary for vectors to be considered similar
    )
    max_cookie_lifetime: timedelta = timedelta(seconds=3000)
    password_reset_token_lifetime: timedelta = timedelta(seconds=3000)

    base_dir: Path = BASE_DIR

    stream: bool = True

    secret_pepper: str = os.environ["SECRET_PEPPER"]
    jwt_algorithm: str = os.environ["JWT_ALGORITHM"]
    api_key: str = os.environ["GEMINI_API_KEY"]


    @property
    def device(self):
        import torch
        return "cuda" if torch.cuda.is_available() else "cpu"

    @property
    def get_gpu_layers(self):
        return 20 if self.device == "cuda" else 0

    @computed_field
    @property
    def get_gpu_layers(self) -> int:
        return 20 if self.device == "cuda" else 0

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    debug: bool = True


logger = Logger.with_default_handlers(name='app-logger')


async def setup_logger(logger: Logger) -> None:
    for handler in logger.handlers:
        await handler.close()
    logger.handlers.clear()

    formatter = Formatter(fmt="%(levelname)s: %(message)s")
    stream_handler = AsyncStreamHandler(stream=sys.stdout)
    stream_handler.formatter = formatter
    logger.add_handler(stream_handler)


app = Celery(
    'app',
    broker=os.environ["REDIS_URL"],
    backend=os.environ["REDIS_URL"],
)

app.conf.update(
    task_serializer='json',
    accept_content=['json'],
    result_serializer='json',
    timezone='UTC',
    enable_utc=True,
    task_track_started=True,
    task_time_limit=3600,
    task_soft_time_limit=3000,
    task_acks_late=True,
    result_expires=3600,
    worker_prefetch_multiplier=1,
    task_queues={
        'default': {'exchange': 'default', 'routing_key': 'default'},
        'high_priority': {'exchange': 'high_priority', 'routing_key': 'high_priority'},
    },
    include=['app.core.tasks']
)

settings = Settings()


async def main():
    await setup_logger(logger)

    await logger.warning("Successfully loaded settings")
    await logger.info(f"Base Directory: {settings.base_dir}")
    await logger.info(f"Running on device: {settings.device}")
    await logger.info(f"Qdrant Host: {settings.qdrant.host}")
    await logger.info(f"LLM GPU Layers: {settings.local_llm.gpu_layers}")

    await logger.info("\n--- Full settings model dump (secrets masked) ---")
    await logger.info(settings.model_dump())

    await logger.info("\n--- Secret fields (from .env file) ---")
    await logger.info(f"Postgres URL: {settings.postgres.url}")
    await logger.info(f"JWT Algorithm: {settings.jwt_algorithm}")
    await logger.info(f"Secret Pepper: {settings.secret_pepper}")
    await logger.info(f"Gemini API Key: {settings.api_key}")

    await logger.shutdown()

if __name__ == "__main__":
    asyncio.run(main())