Spaces:
Running
Running
import gradio as gr | |
# import ctranslate2 | |
# from transformers import AutoTokenizer | |
# from huggingface_hub import snapshot_download | |
from codeexecutor import get_majority_vote, type_check, postprocess_completion, draw_polynomial_plot | |
import re | |
import os | |
# Define the model and tokenizer loading | |
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: " | |
# tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR") | |
# model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina") | |
# generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8") | |
iterations = 4 | |
# # Function to generate predictions using the model | |
# def get_prediction(question): | |
# input_text = model_prompt + question | |
# input_tokens = tokenizer.tokenize(input_text) | |
# results = generator.generate_batch( | |
# [input_tokens], | |
# max_length=512, | |
# sampling_temperature=0.7, | |
# sampling_topk=40, | |
# ) | |
# output_tokens = results[0].sequences[0] | |
# predicted_answer = tokenizer.convert_tokens_to_string(output_tokens) | |
# return predicted_answer | |
def get_prediction(question): | |
return "Solve the following mathematical problem: what is sum of polynomial 2x+3 and 3x?\n### Solution: To solve the problem of summing the polynomials \\(2x + 3\\) and \\(3x\\), we can follow these steps:\n\n1. Define the polynomials.\n2. Sum the polynomials.\n3. Simplify the resulting polynomial expression.\n\nLet's implement this in Python using the sympy library.\n\n```python\nimport sympy as sp\n\n# Define the variable\nx = sp.symbols('x')\n\n# Define the polynomials\npoly1 = 2*x + 3\npoly2 = 3*x\n\n# Sum the polynomials\nsum_poly = poly1 + poly2\n\n# Simplify the resulting polynomial\nsimplified_sum_poly = sp.simplify(sum_poly)\n\n# Print the simplified polynomial\nprint(simplified_sum_poly)\n```\n```output\n5*x + 3\n```\nThe sum of the polynomials \\(2x + 3\\) and \\(3x\\) is \\(\\boxed{5x + 3}\\).\n" | |
# Function to parse the prediction to extract the answer and steps | |
def parse_prediction(prediction): | |
lines = prediction.strip().split('\n') | |
answer = None | |
steps = [] | |
for line in lines: | |
# Check for "Answer:" or "answer:" | |
match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line) | |
if match: | |
answer = match.group(1).strip() | |
else: | |
steps.append(line) | |
if answer is None: | |
# If no "Answer:" found, assume last line is the answer | |
answer = lines[-1].strip() | |
steps = lines | |
steps_text = '\n'.join(steps).strip() | |
return answer, steps_text | |
def extract_boxed_answer(text): | |
# Regular expression to find the content inside \\boxed{} | |
match = re.search(r'\\boxed\{(.*?)\}', text) | |
if match: | |
return match.group(1) # Return the content inside the \\boxed{} | |
return None | |
# Function to perform majority voting and get steps | |
def majority_vote_with_steps(question, num_iterations=10): | |
all_predictions = [] | |
all_answers = [] | |
steps_list = [] | |
for _ in range(num_iterations): | |
prediction = get_prediction(question) | |
answer, success = postprocess_completion(prediction, return_status=True, last_code_block=True) | |
if success: | |
all_predictions.append(prediction) | |
all_answers.append(answer) | |
steps_list.append(prediction) | |
else: | |
answer, steps = parse_prediction(prediction) | |
all_predictions.append(prediction) | |
all_answers.append(answer) | |
steps_list.append(steps) | |
if success: | |
majority_voted_ans = get_majority_vote(all_answers) | |
expression=majority_voted_ans | |
print(type_check(expression)) | |
if type_check(expression) == "Polynomial": | |
plotfile = draw_polynomial_plot(expression) | |
else: | |
plotfile = None | |
# Draw plot of polynomial | |
# Find the steps corresponding to the majority voted answer | |
for i, ans in enumerate(all_answers): | |
if ans == majority_voted_ans: | |
steps_solution = steps_list[i] | |
answer = parse_prediction(steps_solution) | |
break | |
else: | |
answer = majority_voted_ans | |
steps_solution = "No steps found" | |
return answer, steps_solution, plotfile | |
# Function to handle chat-like interaction | |
def chat_interface(history, question): | |
# Get the answer and steps from the majority voting method | |
final_answer, steps_solution, plotfile = majority_vote_with_steps(question, iterations) | |
# Append the question and answer to the chat history | |
history.append(("User", question)) | |
history.append(("MathBot", f"Answer: {final_answer}\nSteps:\n{steps_solution}")) | |
return history, plotfile | |
# Gradio app setup with chat UI | |
interface = gr.Interface( | |
fn=chat_interface, | |
inputs=[ | |
gr.Chatbot(label="Chat with MathBot", elem_id="chat_history"), | |
gr.Textbox(label="Your Question", placeholder="Ask a math question...", elem_id="math_question"), | |
], | |
outputs=[ | |
gr.Chatbot(label="Chat History"), # Chat-like display of conversation | |
gr.Image(label="Polynomial Plot") | |
], | |
title="π’ Math Question Solver - Chat Mode", | |
description="Chat with MathBot and ask any math-related question. It will explain the solution step by step and provide a majority-voted answer.", | |
allow_flagging="auto", | |
flagging_dir="./flagged_data", | |
) | |
if __name__ == "__main__": | |
interface.launch() | |
# history, plotfile=chat_interface(["hello"], ["what is the sum of 2x+3 and 3x"]) | |
# print(history, plotfile) | |