deepseekmath / temp2.py
Pra-tham's picture
added draawubg feautyre
e8c0a63
raw
history blame
5.71 kB
import gradio as gr
# import ctranslate2
# from transformers import AutoTokenizer
# from huggingface_hub import snapshot_download
from codeexecutor import get_majority_vote, type_check, postprocess_completion, draw_polynomial_plot
import re
import os
# Define the model and tokenizer loading
model_prompt = "Explain and solve the following mathematical problem step by step, showing all work: "
# tokenizer = AutoTokenizer.from_pretrained("AI-MO/NuminaMath-7B-TIR")
# model_path = snapshot_download(repo_id="Makima57/deepseek-math-Numina")
# generator = ctranslate2.Generator(model_path, device="cpu", compute_type="int8")
iterations = 4
# # Function to generate predictions using the model
# def get_prediction(question):
# input_text = model_prompt + question
# input_tokens = tokenizer.tokenize(input_text)
# results = generator.generate_batch(
# [input_tokens],
# max_length=512,
# sampling_temperature=0.7,
# sampling_topk=40,
# )
# output_tokens = results[0].sequences[0]
# predicted_answer = tokenizer.convert_tokens_to_string(output_tokens)
# return predicted_answer
def get_prediction(question):
return "Solve the following mathematical problem: what is sum of polynomial 2x+3 and 3x?\n### Solution: To solve the problem of summing the polynomials \\(2x + 3\\) and \\(3x\\), we can follow these steps:\n\n1. Define the polynomials.\n2. Sum the polynomials.\n3. Simplify the resulting polynomial expression.\n\nLet's implement this in Python using the sympy library.\n\n```python\nimport sympy as sp\n\n# Define the variable\nx = sp.symbols('x')\n\n# Define the polynomials\npoly1 = 2*x + 3\npoly2 = 3*x\n\n# Sum the polynomials\nsum_poly = poly1 + poly2\n\n# Simplify the resulting polynomial\nsimplified_sum_poly = sp.simplify(sum_poly)\n\n# Print the simplified polynomial\nprint(simplified_sum_poly)\n```\n```output\n5*x + 3\n```\nThe sum of the polynomials \\(2x + 3\\) and \\(3x\\) is \\(\\boxed{5x + 3}\\).\n"
# Function to parse the prediction to extract the answer and steps
def parse_prediction(prediction):
lines = prediction.strip().split('\n')
answer = None
steps = []
for line in lines:
# Check for "Answer:" or "answer:"
match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line)
if match:
answer = match.group(1).strip()
else:
steps.append(line)
if answer is None:
# If no "Answer:" found, assume last line is the answer
answer = lines[-1].strip()
steps = lines
steps_text = '\n'.join(steps).strip()
return answer, steps_text
def extract_boxed_answer(text):
# Regular expression to find the content inside \\boxed{}
match = re.search(r'\\boxed\{(.*?)\}', text)
if match:
return match.group(1) # Return the content inside the \\boxed{}
return None
# Function to perform majority voting and get steps
def majority_vote_with_steps(question, num_iterations=10):
all_predictions = []
all_answers = []
steps_list = []
for _ in range(num_iterations):
prediction = get_prediction(question)
answer, success = postprocess_completion(prediction, return_status=True, last_code_block=True)
if success:
all_predictions.append(prediction)
all_answers.append(answer)
steps_list.append(prediction)
else:
answer, steps = parse_prediction(prediction)
all_predictions.append(prediction)
all_answers.append(answer)
steps_list.append(steps)
if success:
majority_voted_ans = get_majority_vote(all_answers)
expression=majority_voted_ans
print(type_check(expression))
if type_check(expression) == "Polynomial":
plotfile = draw_polynomial_plot(expression)
else:
plotfile = None
# Draw plot of polynomial
# Find the steps corresponding to the majority voted answer
for i, ans in enumerate(all_answers):
if ans == majority_voted_ans:
steps_solution = steps_list[i]
answer = parse_prediction(steps_solution)
break
else:
answer = majority_voted_ans
steps_solution = "No steps found"
return answer, steps_solution, plotfile
# Function to handle chat-like interaction
def chat_interface(history, question):
# Get the answer and steps from the majority voting method
final_answer, steps_solution, plotfile = majority_vote_with_steps(question, iterations)
# Append the question and answer to the chat history
history.append(("User", question))
history.append(("MathBot", f"Answer: {final_answer}\nSteps:\n{steps_solution}"))
return history, plotfile
# Gradio app setup with chat UI
interface = gr.Interface(
fn=chat_interface,
inputs=[
gr.Chatbot(label="Chat with MathBot", elem_id="chat_history"),
gr.Textbox(label="Your Question", placeholder="Ask a math question...", elem_id="math_question"),
],
outputs=[
gr.Chatbot(label="Chat History"), # Chat-like display of conversation
gr.Image(label="Polynomial Plot")
],
title="πŸ”’ Math Question Solver - Chat Mode",
description="Chat with MathBot and ask any math-related question. It will explain the solution step by step and provide a majority-voted answer.",
allow_flagging="auto",
flagging_dir="./flagged_data",
)
if __name__ == "__main__":
interface.launch()
# history, plotfile=chat_interface(["hello"], ["what is the sum of 2x+3 and 3x"])
# print(history, plotfile)