Spaces:
Sleeping
Sleeping
| from langchain.chat_models import init_chat_model | |
| from dotenv import load_dotenv | |
| import os | |
| from langchain_huggingface import HuggingFaceEmbeddings | |
| from langchain_qdrant import QdrantVectorStore | |
| load_dotenv() | |
| def chat_model(): | |
| groq_api_key = os.getenv('GROQ_API_KEY') | |
| llm = init_chat_model("mistral-saba-24b", model_provider="groq",api_key=groq_api_key) | |
| return llm | |
| def small_chat_model(): | |
| groq_api_key = os.getenv('GROQ_API_KEY') | |
| llm = init_chat_model("llama-3.3-70b-versatile", model_provider="groq",api_key=groq_api_key) | |
| return llm | |
| def init_vector_store(): | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") | |
| doc_store = QdrantVectorStore.from_existing_collection( | |
| embedding=embeddings, | |
| collection_name="multidoc-rag-agent", | |
| url=os.getenv('QDRANT_URL'), | |
| api_key=os.getenv('QDRANT_API_KEY')) | |
| return doc_store | |
| def retrieve_docs(query, doc_store): | |
| retriever = doc_store.as_retriever(search_type="similarity", search_kwargs={"k": 3,}) | |
| response=retriever.invoke(query) | |
| return response | |