File size: 26,038 Bytes
070a384
 
 
 
 
 
 
 
 
 
 
 
 
 
7faf0b7
070a384
 
 
 
 
 
98ed5d0
070a384
 
 
 
 
 
 
 
 
 
 
 
 
3bcb6cd
 
070a384
 
 
 
 
 
 
 
 
 
 
36ac1e7
070a384
 
 
 
 
 
 
 
 
 
 
 
 
36ac1e7
070a384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36ac1e7
070a384
 
 
 
 
 
 
 
 
 
98ed5d0
070a384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98ed5d0
070a384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
098334e
070a384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fccfce
070a384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c06f7c3
070a384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc95662
070a384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2206ad2
070a384
 
4e63032
070a384
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import gradio as gr
import torch
from transformers import pipeline, AutoFeatureExtractor, AutoModelForImageClassification
from PIL import Image
import requests
import io
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import os
from datetime import datetime, timedelta
import json
import google.generativeai as genai

# Constants
NASA_API_KEY = "DEMO_KEY"  # Replace with your NASA API key for production
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY", "")  # Will be set via Hugging Face Spaces environment variables
APOD_URL = "https://api.nasa.gov/planetary/apod"
CELESTIAL_BODIES = ["Sun", "Moon", "Mercury", "Venus", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune", "Pluto"]
CELESTIAL_OBJECTS = ["Galaxy", "Nebula", "Star Cluster", "Supernova Remnant", "Black Hole", "Quasar", "Pulsar"]

# Initialize models
try:
    # Astronomy image classifier
    feature_extractor = AutoFeatureExtractor.from_pretrained("matthewberryman/astronomy-image-classifier")
    model = AutoModelForImageClassification.from_pretrained("matthewberryman/astronomy-image-classifier")
    
    # Image captioning model for astronomy images
    caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
    
    # Initialize Gemini Pro Vision if API key is available
    if GEMINI_API_KEY:
        genai.configure(api_key=GEMINI_API_KEY)
        # Configure the generative model
        gemini_model = genai.GenerativeModel('gemini-2.0-flash')
        gemini_text_model = genai.GenerativeModel('gemini-2.0-flash')
        print("Gemini models initialized successfully")
    else:
        gemini_model = None
        gemini_text_model = None
        print("Gemini API key not found. Advanced features will be disabled.")
except Exception as e:
    print(f"Model loading error: {e}")
    # Fallback to simpler models if needed
    caption_model = None
    gemini_model = None
    gemini_text_model = None

# Helper functions
def get_astronomy_picture_of_day(date=None):
    """Fetch NASA's Astronomy Picture of the Day"""
    params = {'api_key': NASA_API_KEY}
    if date:
        params['date'] = date
    
    try:
        response = requests.get(APOD_URL, params=params)
        data = response.json()
        return data
    except Exception as e:
        return {"error": str(e), "title": "Error fetching APOD", "explanation": "Could not connect to NASA API"}

def classify_astronomy_image(image):
    """Classify an astronomy image using the pretrained model"""
    if feature_extractor is None or model is None:
        return {"error": "Model not loaded"}
    
    try:
        inputs = feature_extractor(images=image, return_tensors="pt")
        outputs = model(**inputs)
        probs = outputs.logits.softmax(1)
        pred_class = outputs.logits.argmax(-1).item()
        
        # Get class labels and probabilities
        id2label = model.config.id2label
        prediction = id2label[pred_class]
        confidence = probs[0][pred_class].item()
        
        # Get top 3 predictions
        top_3_indices = probs[0].topk(3).indices
        top_3_preds = [(id2label[idx.item()], probs[0][idx].item()) for idx in top_3_indices]
        
        return {
            "prediction": prediction,
            "confidence": confidence,
            "top_3": top_3_preds
        }
    except Exception as e:
        return {"error": str(e)}

def generate_image_caption(image):
    """Generate a caption for the astronomy image"""
    if caption_model is None:
        return "Image captioning model not available"
    
    try:
        caption = caption_model(image)[0]['generated_text']
        return caption
    except Exception as e:
        return f"Error generating caption: {str(e)}"

def analyze_with_gemini(image, prompt=None):
    """Analyze astronomy image with Gemini Pro Vision"""
    if gemini_model is None:
        return "Gemini API not configured. Please add your API key in the Space settings."
    
    try:
        # Convert PIL image to bytes for Gemini
        img_byte_arr = io.BytesIO()
        image.save(img_byte_arr, format='PNG')
        img_byte_arr = img_byte_arr.getvalue()
        
        # Default prompt for astronomy images
        if not prompt:
            prompt = """
            You are an expert astrophysicist. Analyze this astronomy image in detail.
            Include:
            1. Identification of the celestial object(s)
            2. Scientific explanation of what's visible
            3. Approximate distance from Earth (if applicable)
            4. Interesting scientific facts about this type of object
            5. Technological details about how such images are captured
            6. Research value of studying this object
            Format your analysis professionally as if for a scientific publication.
            """
        
        # Generate analysis using Gemini
        response = gemini_model.generate_content([prompt, img_byte_arr])
        return response.text
    except Exception as e:
        return f"Error analyzing with Gemini: {str(e)}"

def get_professional_insights(query, context=None):
    """Get professional astronomy insights using Gemini Pro"""
    if gemini_text_model is None:
        return "Gemini API not configured. Please add your API key in the Space settings."
    
    try:
        # Build prompt with context if provided
        prompt = f"""
        You are a professional astrophysicist with expertise in observational astronomy, 
        cosmology, planetary science, and stellar evolution. 
        
        Please provide a comprehensive, scientifically accurate response to the following query:
        
        {query}
        """
        
        if context:
            prompt += f"\n\nAdditional context: {context}"
        
        # Generate insights
        response = gemini_text_model.generate_content(prompt)
        return response.text
    except Exception as e:
        return f"Error getting insights: {str(e)}"

def fetch_celestial_object_info(object_name):
    """Fetch information about a celestial object"""
    # First check if Gemini is available for enhanced descriptions
    if gemini_text_model is not None:
        try:
            # Generate detailed information using Gemini
            prompt = f"""
            You are an astronomy database. Provide comprehensive, scientifically accurate information about {object_name}.
            Include these sections:
            - Type of object
            - Physical characteristics (size, mass, composition)
            - Distance from Earth
            - Formation and evolution
            - Notable features
            - Scientific significance
            - Recent discoveries (if applicable)
            
            Format this as structured data that can be parsed as JSON with the following fields:
            type, distance, diameter, mass, temperature, composition, age, notable_features, research_value, description
            
            Ensure all values are scientifically accurate and use appropriate units.
            """
            
            response = gemini_text_model.generate_content(prompt)
            # Try to parse as JSON
            try:
                # This is a simplification - in a real app we'd need more robust parsing
                import re
                json_match = re.search(r'```json\n(.*?)```', response.text, re.DOTALL)
                if json_match:
                    json_str = json_match.group(1)
                    return json.loads(json_str)
                else:
                    # Fallback to text processing if no JSON is found
                    lines = response.text.split('\n')
                    info = {"description": ""}
                    current_key = None
                    
                    for line in lines:
                        if ':' in line and not line.startswith('  '):
                            parts = line.split(':', 1)
                            key = parts[0].lower().strip().replace(' ', '_')
                            value = parts[1].strip()
                            info[key] = value
                            current_key = key
                        elif current_key and line.strip() and current_key == "description":
                            info[current_key] += " " + line.strip()
                    
                    if "description" not in info or not info["description"]:
                        info["description"] = f"Information about {object_name} generated using AI."
                    
                    return info
            except:
                # JSON parsing failed, use fallback database
                pass
        except:
            # If Gemini fails, use the fallback database
            pass
    
    # Fallback database
    info = {
        "Sun": {
            "type": "Star",
            "distance": "1 AU (149.6 million km)",
            "diameter": "1,391,000 km",
            "mass": "1.989 × 10^30 kg",
            "temperature": "5,778 K (surface)",
            "description": "The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core."
        },
        "Moon": {
            "type": "Natural Satellite",
            "distance": "384,400 km from Earth",
            "diameter": "3,474 km",
            "mass": "7.342 × 10^22 kg",
            "temperature": "-173°C to 127°C",
            "description": "The Moon is Earth's only natural satellite. It is the fifth-largest satellite in the Solar System and the largest among planetary satellites relative to the size of the planet it orbits."
        },
        "Mars": {
            "type": "Planet",
            "distance": "1.5 AU (227.9 million km)",
            "diameter": "6,779 km",
            "mass": "6.39 × 10^23 kg",
            "temperature": "-87°C to -5°C",
            "description": "Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System. Mars is often called the 'Red Planet' due to its reddish appearance."
        },
        "Galaxy": {
            "type": "Galaxy",
            "description": "A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. The Milky Way is the galaxy that contains our Solar System."
        },
        "Nebula": {
            "type": "Nebula",
            "description": "A nebula is an interstellar cloud of dust, hydrogen, helium and other ionized gases. Many nebulae are regions where new stars are being formed."
        }
    }
    
    # Return info if available, otherwise return a generic message
    return info.get(object_name, {"description": f"Information about {object_name} is not available in the demo database."})

def generate_star_chart(latitude, longitude, date=None):
    """Generate a simple star chart based on location and date"""
    # This would ideally use a real astronomy library like Astropy
    # For demo purposes, we'll create a simulated star chart
    
    # Create a simple star field
    np.random.seed(42)  # For reproducibility
    
    # Number of stars depends on date and location (simulated effect)
    lat_factor = abs(latitude) / 90.0  # 0 to 1
    if date:
        try:
            date_obj = datetime.strptime(date, "%Y-%m-%d")
            day_of_year = date_obj.timetuple().tm_yday
            season_factor = abs(((day_of_year + 10) % 365) - 182.5) / 182.5  # 0 to 1
        except:
            season_factor = 0.5
    else:
        season_factor = 0.5
    
    num_stars = int(1000 + 2000 * lat_factor * season_factor)
    
    # Create star positions
    x = np.random.rand(num_stars) * 2 - 1  # -1 to 1
    y = np.random.rand(num_stars) * 2 - 1  # -1 to 1
    
    # Create star brightnesses (magnitudes)
    magnitudes = np.random.exponential(1, num_stars) * 5
    
    # Filter stars that would be below horizon
    horizon_mask = y > -0.2
    x = x[horizon_mask]
    y = y[horizon_mask]
    magnitudes = magnitudes[horizon_mask]
    
    # Create plot
    fig, ax = plt.subplots(figsize=(10, 10), facecolor='black')
    ax.set_facecolor('black')
    
    # Plot stars with varying sizes based on magnitude
    sizes = 50 * np.exp(-magnitudes/2)
    ax.scatter(x, y, s=sizes, color='white', alpha=0.8)
    
    # Add celestial objects based on date and location (simulated)
    # Moon
    moon_x = 0.7 * np.cos(latitude/30)
    moon_y = 0.6 * np.sin(longitude/30)
    ax.scatter(moon_x, moon_y, s=300, color='lightgray', alpha=0.9)
    ax.text(moon_x + 0.05, moon_y, 'Moon', color='white', fontsize=12)
    
    # A bright planet
    planet_x = -0.5 * np.sin(latitude/20)
    planet_y = 0.4 * np.cos(longitude/20)
    ax.scatter(planet_x, planet_y, s=120, color='orange', alpha=0.9)
    ax.text(planet_x + 0.05, planet_y, 'Jupiter', color='white', fontsize=12)
    
    # Add a few constellations (simplified)
    constellations = [
        {"name": "Big Dipper", "stars": [(0.2, 0.5), (0.3, 0.55), (0.4, 0.6), 
                                       (0.5, 0.62), (0.55, 0.5), (0.5, 0.4), (0.4, 0.45)]},
        {"name": "Orion", "stars": [(-0.3, -0.1), (-0.25, 0), (-0.2, 0.1), 
                                   (-0.15, 0), (-0.35, -0.15), (-0.25, -0.15), (-0.15, -0.15)]}
    ]
    
    for constellation in constellations:
        # Draw lines connecting stars
        points = np.array(constellation["stars"])
        ax.plot(points[:,0], points[:,1], 'white', alpha=0.3, linestyle='-', linewidth=1)
        
        # Draw stars
        for x, y in constellation["stars"]:
            ax.scatter(x, y, s=100, color='white', alpha=0.9)
        
        # Label constellation
        center_x = np.mean([p[0] for p in constellation["stars"]])
        center_y = np.mean([p[1] for p in constellation["stars"]])
        ax.text(center_x, center_y + 0.1, constellation["name"], color='white', fontsize=12, ha='center')
    
    # Set plot parameters
    ax.set_xlim(-1, 1)
    ax.set_ylim(-1, 1)
    ax.set_aspect('equal')
    ax.axis('off')
    
    # Set title with location and date
    location_str = f"Lat: {latitude:.1f}°, Long: {longitude:.1f}°"
    date_str = date if date else datetime.now().strftime("%Y-%m-%d")
    ax.set_title(f"Star Chart for {location_str} on {date_str}", color='white', fontsize=14)
    
    # Save to a buffer and return
    buf = io.BytesIO()
    plt.savefig(buf, format='png', facecolor='black')
    buf.seek(0)
    plt.close(fig)
    
    return buf

def predict_space_weather(date=None):
    """Predict space weather conditions (solar flares, aurora activity)"""
    # This would ideally use real space weather data and predictions
    # For demo purposes, we'll generate simulated predictions
    
    if date:
        try:
            target_date = datetime.strptime(date, "%Y-%m-%d")
        except:
            target_date = datetime.now()
    else:
        target_date = datetime.now()
    
    # Generate predictions for 7 days
    dates = [(target_date + timedelta(days=i)).strftime("%Y-%m-%d") for i in range(7)]
    
    # Simulate solar activity (0-10 scale)
    np.random.seed(int(target_date.timestamp()) % 1000)
    solar_activity = np.clip(5 + np.cumsum(np.random.normal(0, 1, 7)) * 0.5, 0, 10)
    
    # Simulate geomagnetic activity (Kp index, 0-9 scale)
    geomagnetic_activity = np.clip(np.round(4 + np.cumsum(np.random.normal(0, 0.8, 7)) * 0.3), 0, 9)
    
    # Simulate aurora visibility (0-10 scale)
    aurora_visibility = np.clip(geomagnetic_activity * 1.1 + np.random.normal(0, 1, 7), 0, 10)
    
    # Simulate solar flare probability (percentage)
    flare_probability = np.clip(solar_activity * 10 + np.random.normal(0, 5, 7), 0, 100)
    
    # Create a dataframe
    weather_df = pd.DataFrame({
        'Date': dates,
        'Solar Activity': [f"{x:.1f}/10" for x in solar_activity],
        'Geomagnetic Activity': [f"Kp {int(x)}" for x in geomagnetic_activity],
        'Aurora Visibility': [f"{x:.1f}/10" for x in aurora_visibility],
        'Solar Flare Probability': [f"{int(x)}%" for x in flare_probability]
    })
    
    return weather_df

# UI Components
def build_ui():
    with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo")) as app:
        gr.Markdown(
            """
            # 🌌 Professional AI Astronomy Explorer
            
            Explore the universe with the power of AI and Gemini Pro! Upload your astronomy images for classification, 
            get the latest astronomy picture of the day, generate star charts based on your location,
            and access professional-grade astronomical analysis powered by Google's Gemini API.
            """
        )
        
        with gr.Tab("📸 Professional Image Analysis"):
            with gr.Row():
                with gr.Column(scale=1):
                    input_image = gr.Image(type="pil", label="Upload Astronomy Image")
                    with gr.Row():
                        classify_btn = gr.Button("Basic Analysis", variant="secondary", scale=1)
                        gemini_btn = gr.Button("Professional Analysis (Gemini)", variant="primary", scale=1)
                    
                    gemini_prompt = gr.Textbox(
                        label="Customize Gemini Analysis Prompt (Optional)", 
                        placeholder="Leave blank for default professional analysis",
                        lines=3,
                        visible=True
                    )
                    
                with gr.Column(scale=1):
                    with gr.Tabs():
                        with gr.TabItem("Basic Results"):
                            prediction_output = gr.Textbox(label="Predicted Object Type")
                            confidence_output = gr.Textbox(label="Confidence")
                            top3_output = gr.JSON(label="Top 3 Predictions")
                            caption_output = gr.Textbox(label="AI-Generated Caption", lines=3)
                        
                        with gr.TabItem("Professional Analysis"):
                            gemini_output = gr.Markdown(label="Gemini Pro Analysis")
            
            classify_btn.click(
                fn=lambda img: {
                    prediction_output: classify_astronomy_image(img).get("prediction", "Unknown"),
                    confidence_output: f"{classify_astronomy_image(img).get('confidence', 0) * 100:.2f}%",
                    top3_output: [{"class": c, "probability": f"{p*100:.2f}%"} for c, p in classify_astronomy_image(img).get("top_3", [])],
                    caption_output: generate_image_caption(img)
                },
                inputs=input_image,
                outputs=[prediction_output, confidence_output, top3_output, caption_output]
            )
            
            gemini_btn.click(
                fn=lambda img, prompt: analyze_with_gemini(img, prompt),
                inputs=[input_image, gemini_prompt],
                outputs=gemini_output
            )
        
        with gr.Tab("🔭 Astronomy Picture of the Day"):
            with gr.Row():
                with gr.Column(scale=1):
                    apod_date = gr.Date(label="Select Date (or leave blank for today)")
                    apod_btn = gr.Button("Get Astronomy Picture of the Day", variant="primary")
                    
                with gr.Column(scale=2):
                    apod_image = gr.Image(label="APOD Image", interactive=False)
                    apod_title = gr.Textbox(label="Title")
                    apod_desc = gr.Textbox(label="Description", lines=5)
            
            apod_btn.click(
                fn=lambda date: {
                    apod_image: requests.get(get_astronomy_picture_of_day(date).get("url", "")).content if "url" in get_astronomy_picture_of_day(date) else None,
                    apod_title: get_astronomy_picture_of_day(date).get("title", "Error fetching APOD"),
                    apod_desc: get_astronomy_picture_of_day(date).get("explanation", "No description available")
                },
                inputs=apod_date,
                outputs=[apod_image, apod_title, apod_desc]
            )
        
        with gr.Tab("🌠 Star Chart Generator"):
            with gr.Row():
                with gr.Column(scale=1):
                    latitude = gr.Slider(minimum=-90, maximum=90, value=40, step=0.1, label="Latitude")
                    longitude = gr.Slider(minimum=-180, maximum=180, value=-75, step=0.1, label="Longitude")
                    chart_date = gr.Date(label="Date (leave blank for today)")
                    chart_btn = gr.Button("Generate Star Chart", variant="primary")
                    
                with gr.Column(scale=2):
                    star_chart = gr.Image(label="Generated Star Chart", interactive=False)
            
            chart_btn.click(
                fn=lambda lat, long, date: star_chart.update(generate_star_chart(lat, long, date)),
                inputs=[latitude, longitude, chart_date],
                outputs=star_chart
            )
        
        with gr.Tab("☀️ Space Weather"):
            with gr.Row():
                with gr.Column(scale=1):
                    weather_date = gr.Date(label="Start Date (leave blank for today)")
                    weather_btn = gr.Button("Predict Space Weather", variant="primary")
                    
                with gr.Column(scale=2):
                    weather_output = gr.Dataframe(label="7-Day Space Weather Forecast")
            
            weather_btn.click(
                fn=lambda date: predict_space_weather(date),
                inputs=weather_date,
                outputs=weather_output
            )
        
        with gr.Tab("🪐 Professional Astronomy Knowledge Base"):
            with gr.Tabs():
                with gr.TabItem("Celestial Object Database"):
                    with gr.Row():
                        with gr.Column(scale=1):
                            object_selector = gr.Dropdown(
                                choices=CELESTIAL_BODIES + CELESTIAL_OBJECTS,
                                label="Select Celestial Object"
                            )
                            object_btn = gr.Button("Get Information", variant="primary")
                            
                        with gr.Column(scale=2):
                            object_info = gr.JSON(label="Object Information")
                            object_desc = gr.Textbox(label="Description", lines=4)
                    
                    object_btn.click(
                        fn=lambda obj: {
                            object_info: {k: v for k, v in fetch_celestial_object_info(obj).items() if k != "description"},
                            object_desc: fetch_celestial_object_info(obj).get("description", "No description available")
                        },
                        inputs=object_selector,
                        outputs=[object_info, object_desc]
                    )
                
                with gr.TabItem("Ask a Professional Astronomer"):
                    with gr.Row():
                        with gr.Column(scale=1):
                            astro_query = gr.Textbox(
                                label="Your Astronomy Question", 
                                placeholder="Ask about celestial objects, phenomena, theories, or observational techniques...",
                                lines=3
                            )
                            astro_context = gr.Textbox(
                                label="Additional Context (Optional)",
                                placeholder="Add any relevant context or background to your question",
                                lines=2
                            )
                            ask_btn = gr.Button("Get Professional Insights", variant="primary")
                            
                        with gr.Column(scale=1):
                            pro_insights = gr.Markdown(label="Professional Insights")
                    
                    ask_btn.click(
                        fn=lambda query, context: get_professional_insights(query, context),
                        inputs=[astro_query, astro_context],
                        outputs=pro_insights
                    )
        
        gr.Markdown(
            """
            ### About This Professional Astronomy App
            
            This AI Astronomy Explorer combines advanced machine learning models with Google's Gemini AI to provide professional-grade astronomical analysis:
            
            - **Professional Image Analysis**: 
              - Basic classification with standard ML models
              - Advanced analysis with Gemini Pro Vision providing expert-level insights
              - Customizable analysis prompts for specific research questions
            
            - **Research-Grade Tools**:
              - NASA APOD integration for daily astronomical phenomena
              - Interactive star chart generation with astronomical calculations
              - Space weather forecasting for observational planning
            
            - **Professional Knowledge Base**:
              - Comprehensive celestial object database enhanced by Gemini Pro
              - "Ask a Professional Astronomer" feature for research questions
              - Scientifically accurate information suitable for educational and research purposes
            
            Developed with ❤️ for astronomy professionals, researchers, educators, and enthusiasts.
            
            *Note: The full functionality of this app requires a valid Google Gemini API key to be configured in the Space settings.*
            """
        )
    
    return app

# Create and launch the app
app = build_ui()

# For Hugging Face Spaces deployment
if __name__ == "__main__":
    app.launch()