Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import random
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
from typing import Dict, Any, List, Optional
|
8 |
+
from pydantic import BaseModel, Field
|
9 |
+
import gradio as gr
|
10 |
+
from crewai import Agent, Crew, Process, Task, LLM
|
11 |
+
from crewai.agent import agent
|
12 |
+
from crewai.task import task
|
13 |
+
from crewai.crew import crew, CrewBase
|
14 |
+
|
15 |
+
# Setup logging
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.INFO,
|
18 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
19 |
+
)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
# Initialize LLM (will use environment variable)
|
23 |
+
llm = LLM(
|
24 |
+
model="gemini/gemini-2.0-flash-exp", # or any other model
|
25 |
+
api_key=os.getenv("GEMINI_API_KEY", "dummy-key-for-testing"),
|
26 |
+
)
|
27 |
+
|
28 |
+
# ========== DATA MODELS ==========
|
29 |
+
class UserVerification(BaseModel):
|
30 |
+
user_id: str = Field(..., description="User ID")
|
31 |
+
name: str = Field(..., description="User name")
|
32 |
+
email: str = Field(..., description="User email")
|
33 |
+
is_verified: bool = Field(..., description="KYC verification status")
|
34 |
+
verification_level: str = Field(..., description="Verification level: basic, standard, premium")
|
35 |
+
risk_score: float = Field(..., description="Risk score 0-1")
|
36 |
+
|
37 |
+
class ScalpingDetection(BaseModel):
|
38 |
+
is_scalper: bool = Field(..., description="Whether user is detected as scalper")
|
39 |
+
confidence: float = Field(..., description="Detection confidence 0-1")
|
40 |
+
flags: List[str] = Field(..., description="Suspicious activity flags")
|
41 |
+
purchase_velocity: int = Field(..., description="Number of purchases in last hour")
|
42 |
+
ip_duplicates: int = Field(..., description="Number of accounts from same IP")
|
43 |
+
|
44 |
+
class PricingRecommendation(BaseModel):
|
45 |
+
original_price: float = Field(..., description="Original ticket price")
|
46 |
+
recommended_resale_price: float = Field(..., description="Recommended resale price")
|
47 |
+
demand_level: str = Field(..., description="Current demand level")
|
48 |
+
price_adjustment_reason: str = Field(..., description="Reason for price adjustment")
|
49 |
+
profit_margin: Optional[float] = Field(None, description="Profit margin percentage")
|
50 |
+
loss_percentage: Optional[float] = Field(None, description="Loss percentage if selling below cost")
|
51 |
+
|
52 |
+
class ResaleCompliance(BaseModel):
|
53 |
+
is_compliant: bool = Field(..., description="Whether resale is policy compliant")
|
54 |
+
violations: List[str] = Field(..., description="List of policy violations")
|
55 |
+
resale_allowed: bool = Field(..., description="Whether resale is allowed")
|
56 |
+
max_allowed_price: float = Field(..., description="Maximum allowed resale price")
|
57 |
+
recommendation: str = Field(..., description="Compliance recommendation")
|
58 |
+
|
59 |
+
class TicketingSystemReport(BaseModel):
|
60 |
+
verification: UserVerification
|
61 |
+
scalping_detection: ScalpingDetection
|
62 |
+
pricing: PricingRecommendation
|
63 |
+
compliance: ResaleCompliance
|
64 |
+
final_decision: str = Field(..., description="Final system decision")
|
65 |
+
action_items: List[str] = Field(..., description="Recommended actions")
|
66 |
+
|
67 |
+
# ========== MOCK DATA STORE ==========
|
68 |
+
class MockDatabase:
|
69 |
+
"""Simulates a database for the MVP"""
|
70 |
+
def __init__(self):
|
71 |
+
self.user_purchase_history = {}
|
72 |
+
self.ip_addresses = {}
|
73 |
+
self.resale_history = {}
|
74 |
+
|
75 |
+
def get_user_purchases(self, user_id: str) -> int:
|
76 |
+
"""Get number of recent purchases for a user"""
|
77 |
+
return self.user_purchase_history.get(user_id, random.randint(0, 5))
|
78 |
+
|
79 |
+
def get_ip_accounts(self, user_id: str) -> int:
|
80 |
+
"""Get number of accounts from same IP"""
|
81 |
+
return random.randint(1, 4)
|
82 |
+
|
83 |
+
def get_resale_frequency(self, user_id: str) -> int:
|
84 |
+
"""Get user's resale frequency"""
|
85 |
+
return self.resale_history.get(user_id, random.randint(0, 10))
|
86 |
+
|
87 |
+
# Initialize mock database
|
88 |
+
mock_db = MockDatabase()
|
89 |
+
|
90 |
+
# ========== CREW CLASS ==========
|
91 |
+
class AntiScalpingCrew(CrewBase):
|
92 |
+
"""Anti-Scalping Ticketing System Crew"""
|
93 |
+
|
94 |
+
@agent
|
95 |
+
def user_verification_agent(self) -> Agent:
|
96 |
+
return Agent(
|
97 |
+
role="User Verification Specialist",
|
98 |
+
goal="Verify user identity and assess verification level for ticket purchases",
|
99 |
+
backstory="""You are an expert in Know Your Customer (KYC) processes and identity
|
100 |
+
verification. You assess user documentation, verify identities, and assign risk scores
|
101 |
+
based on user history and verification completeness. You ensure only legitimate users
|
102 |
+
can purchase tickets while maintaining a smooth user experience.""",
|
103 |
+
llm=llm,
|
104 |
+
verbose=True
|
105 |
+
)
|
106 |
+
|
107 |
+
@agent
|
108 |
+
def scalping_detection_agent(self) -> Agent:
|
109 |
+
return Agent(
|
110 |
+
role="Scalping Detection Analyst",
|
111 |
+
goal="Detect and prevent ticket scalping through behavioral analysis",
|
112 |
+
backstory="""You are a specialized analyst focused on identifying scalping patterns.
|
113 |
+
You analyze purchase velocity, IP addresses, buying patterns, and other behavioral
|
114 |
+
indicators to detect potential scalpers. Your expertise helps maintain fair ticket
|
115 |
+
distribution and prevents automated bot purchases.""",
|
116 |
+
llm=llm,
|
117 |
+
verbose=True
|
118 |
+
)
|
119 |
+
|
120 |
+
@agent
|
121 |
+
def dynamic_pricing_agent(self) -> Agent:
|
122 |
+
return Agent(
|
123 |
+
role="Dynamic Pricing Strategist",
|
124 |
+
goal="Calculate fair resale prices based on demand while preventing price gouging",
|
125 |
+
backstory="""You are an expert in market dynamics and pricing strategies. You analyze
|
126 |
+
demand levels, market conditions, and event popularity to recommend fair resale prices.
|
127 |
+
You balance market forces with consumer protection, ensuring prices reflect true demand
|
128 |
+
without enabling exploitative pricing.""",
|
129 |
+
llm=llm,
|
130 |
+
verbose=True
|
131 |
+
)
|
132 |
+
|
133 |
+
@agent
|
134 |
+
def resale_monitor_agent(self) -> Agent:
|
135 |
+
return Agent(
|
136 |
+
role="Resale Compliance Officer",
|
137 |
+
goal="Monitor and enforce resale policies to ensure fair ticket distribution",
|
138 |
+
backstory="""You are responsible for ensuring all ticket resales comply with platform
|
139 |
+
policies and local regulations. You monitor resale prices, frequency, and patterns to
|
140 |
+
prevent policy violations. Your work ensures the secondary ticket market remains fair
|
141 |
+
and accessible to genuine fans.""",
|
142 |
+
llm=llm,
|
143 |
+
verbose=True
|
144 |
+
)
|
145 |
+
|
146 |
+
@task
|
147 |
+
def verify_user_task(self) -> Task:
|
148 |
+
return Task(
|
149 |
+
description="""Verify the user with the following details:
|
150 |
+
- Name: {name}
|
151 |
+
- Email: {email}
|
152 |
+
- User ID: {user_id}
|
153 |
+
|
154 |
+
Perform KYC verification checks:
|
155 |
+
1. Validate email format and domain
|
156 |
+
2. Check if name appears legitimate
|
157 |
+
3. Assign verification level (basic/standard/premium)
|
158 |
+
4. Calculate risk score (0-1) based on user patterns
|
159 |
+
5. Determine if user is verified for ticket purchase
|
160 |
+
|
161 |
+
Consider factors like email domain reputation, name consistency, and any red flags.""",
|
162 |
+
agent=self.user_verification_agent(),
|
163 |
+
expected_output="UserVerification model with complete verification details"
|
164 |
+
)
|
165 |
+
|
166 |
+
@task
|
167 |
+
def detect_scalping_task(self) -> Task:
|
168 |
+
return Task(
|
169 |
+
description="""Analyze user behavior for scalping indicators:
|
170 |
+
- User ID: {user_id}
|
171 |
+
- Current purchase attempt for event: {event_name}
|
172 |
+
- Ticket quantity requested: {ticket_quantity}
|
173 |
+
|
174 |
+
Check for scalping patterns:
|
175 |
+
1. Purchase velocity (multiple purchases in short time)
|
176 |
+
2. IP address duplication (multiple accounts from same IP)
|
177 |
+
3. Unusual buying patterns
|
178 |
+
4. Bot-like behavior indicators
|
179 |
+
5. Historical resale frequency
|
180 |
+
|
181 |
+
Use the user's purchase history and behavioral data to determine scalping likelihood.""",
|
182 |
+
agent=self.scalping_detection_agent(),
|
183 |
+
expected_output="ScalpingDetection model with detection results and confidence score"
|
184 |
+
)
|
185 |
+
|
186 |
+
@task
|
187 |
+
def calculate_pricing_task(self) -> Task:
|
188 |
+
return Task(
|
189 |
+
description="""Calculate recommended resale price for:
|
190 |
+
- Event: {event_name}
|
191 |
+
- Original ticket price: ${original_price}
|
192 |
+
- Current demand level: {demand_level}
|
193 |
+
- Ticket type: {ticket_type}
|
194 |
+
|
195 |
+
Pricing guidelines:
|
196 |
+
- Low demand: Allow 10-20% below original price (acknowledge loss)
|
197 |
+
- Medium demand: Allow up to 25% markup
|
198 |
+
- High demand: Allow up to 50% markup (with profit margin note)
|
199 |
+
|
200 |
+
Consider market factors and ensure pricing remains fair while reflecting demand.""",
|
201 |
+
agent=self.dynamic_pricing_agent(),
|
202 |
+
expected_output="PricingRecommendation model with price calculations and justification"
|
203 |
+
)
|
204 |
+
|
205 |
+
@task
|
206 |
+
def monitor_compliance_task(self) -> Task:
|
207 |
+
return Task(
|
208 |
+
description="""Evaluate resale compliance for:
|
209 |
+
- User ID: {user_id}
|
210 |
+
- Proposed resale price: ${proposed_resale_price}
|
211 |
+
- Original price: ${original_price}
|
212 |
+
- User's resale history from scalping detection
|
213 |
+
|
214 |
+
Check against policies:
|
215 |
+
1. Maximum 2x original price cap
|
216 |
+
2. No more than 4 resales per month
|
217 |
+
3. No bulk resales (>4 tickets at once)
|
218 |
+
4. Cooling period between purchases and resales
|
219 |
+
|
220 |
+
Determine if resale should be allowed and provide recommendations.""",
|
221 |
+
agent=self.resale_monitor_agent(),
|
222 |
+
context=[self.detect_scalping_task(), self.calculate_pricing_task()],
|
223 |
+
expected_output="ResaleCompliance model with compliance decision and violations"
|
224 |
+
)
|
225 |
+
|
226 |
+
@task
|
227 |
+
def final_report_task(self) -> Task:
|
228 |
+
return Task(
|
229 |
+
description="""Create comprehensive system report combining all findings:
|
230 |
+
1. User verification results
|
231 |
+
2. Scalping detection analysis
|
232 |
+
3. Pricing recommendations
|
233 |
+
4. Compliance evaluation
|
234 |
+
|
235 |
+
Provide final decision on whether to:
|
236 |
+
- Allow ticket purchase
|
237 |
+
- Allow ticket resale
|
238 |
+
- Apply any restrictions
|
239 |
+
- Recommend specific actions
|
240 |
+
|
241 |
+
Ensure report is clear and actionable.""",
|
242 |
+
agent=self.resale_monitor_agent(),
|
243 |
+
context=[
|
244 |
+
self.verify_user_task(),
|
245 |
+
self.detect_scalping_task(),
|
246 |
+
self.calculate_pricing_task(),
|
247 |
+
self.monitor_compliance_task()
|
248 |
+
],
|
249 |
+
expected_output="Complete TicketingSystemReport with all components and final decision"
|
250 |
+
)
|
251 |
+
|
252 |
+
@crew
|
253 |
+
def crew(self) -> Crew:
|
254 |
+
return Crew(
|
255 |
+
agents=self.agents,
|
256 |
+
tasks=self.tasks,
|
257 |
+
process=Process.sequential,
|
258 |
+
verbose=True
|
259 |
+
)
|
260 |
+
|
261 |
+
# ========== MAIN APPLICATION ==========
|
262 |
+
class AntiScalpingSystem:
|
263 |
+
def __init__(self):
|
264 |
+
self.crew_instance = AntiScalpingCrew()
|
265 |
+
|
266 |
+
def process_ticket_transaction(
|
267 |
+
self,
|
268 |
+
name: str,
|
269 |
+
email: str,
|
270 |
+
user_id: str,
|
271 |
+
event_name: str,
|
272 |
+
ticket_type: str,
|
273 |
+
ticket_quantity: int,
|
274 |
+
original_price: float,
|
275 |
+
demand_level: str,
|
276 |
+
proposed_resale_price: float
|
277 |
+
) -> Dict[str, Any]:
|
278 |
+
"""Process a ticket transaction through the anti-scalping system"""
|
279 |
+
|
280 |
+
# Simulate some purchase history for the user
|
281 |
+
purchase_count = mock_db.get_user_purchases(user_id)
|
282 |
+
mock_db.user_purchase_history[user_id] = purchase_count + 1
|
283 |
+
|
284 |
+
inputs = {
|
285 |
+
"name": name,
|
286 |
+
"email": email,
|
287 |
+
"user_id": user_id,
|
288 |
+
"event_name": event_name,
|
289 |
+
"ticket_type": ticket_type,
|
290 |
+
"ticket_quantity": ticket_quantity,
|
291 |
+
"original_price": original_price,
|
292 |
+
"demand_level": demand_level,
|
293 |
+
"proposed_resale_price": proposed_resale_price
|
294 |
+
}
|
295 |
+
|
296 |
+
try:
|
297 |
+
result = self.crew_instance.crew().kickoff(inputs=inputs)
|
298 |
+
|
299 |
+
# Parse the result and create a structured response
|
300 |
+
if hasattr(result, 'dict'):
|
301 |
+
return result.dict()
|
302 |
+
else:
|
303 |
+
# Create a mock response for demo purposes
|
304 |
+
return self._create_mock_response(inputs)
|
305 |
+
except Exception as e:
|
306 |
+
logger.error(f"Error processing transaction: {e}")
|
307 |
+
return self._create_mock_response(inputs)
|
308 |
+
|
309 |
+
def _create_mock_response(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
|
310 |
+
"""Create a mock response for demo purposes"""
|
311 |
+
is_scalper = random.random() > 0.7
|
312 |
+
price_ratio = inputs["proposed_resale_price"] / inputs["original_price"]
|
313 |
+
|
314 |
+
return {
|
315 |
+
"verification": {
|
316 |
+
"user_id": inputs["user_id"],
|
317 |
+
"name": inputs["name"],
|
318 |
+
"email": inputs["email"],
|
319 |
+
"is_verified": not is_scalper,
|
320 |
+
"verification_level": "standard" if not is_scalper else "basic",
|
321 |
+
"risk_score": 0.3 if not is_scalper else 0.8
|
322 |
+
},
|
323 |
+
"scalping_detection": {
|
324 |
+
"is_scalper": is_scalper,
|
325 |
+
"confidence": 0.85 if is_scalper else 0.15,
|
326 |
+
"flags": ["rapid_purchases", "multiple_ips"] if is_scalper else [],
|
327 |
+
"purchase_velocity": random.randint(1, 10),
|
328 |
+
"ip_duplicates": random.randint(1, 5)
|
329 |
+
},
|
330 |
+
"pricing": {
|
331 |
+
"original_price": inputs["original_price"],
|
332 |
+
"recommended_resale_price": inputs["proposed_resale_price"],
|
333 |
+
"demand_level": inputs["demand_level"],
|
334 |
+
"price_adjustment_reason": f"Based on {inputs['demand_level']} demand",
|
335 |
+
"profit_margin": (price_ratio - 1) * 100 if price_ratio > 1 else None,
|
336 |
+
"loss_percentage": (1 - price_ratio) * 100 if price_ratio < 1 else None
|
337 |
+
},
|
338 |
+
"compliance": {
|
339 |
+
"is_compliant": price_ratio <= 2 and not is_scalper,
|
340 |
+
"violations": ["price_exceeds_2x"] if price_ratio > 2 else [],
|
341 |
+
"resale_allowed": price_ratio <= 2 and not is_scalper,
|
342 |
+
"max_allowed_price": inputs["original_price"] * 2,
|
343 |
+
"recommendation": "Proceed with resale" if price_ratio <= 2 and not is_scalper else "Block transaction"
|
344 |
+
},
|
345 |
+
"final_decision": "APPROVED" if price_ratio <= 2 and not is_scalper else "DENIED",
|
346 |
+
"action_items": [
|
347 |
+
"Process ticket resale" if price_ratio <= 2 and not is_scalper else "Block transaction",
|
348 |
+
"Monitor future activity" if is_scalper else "No additional action required"
|
349 |
+
]
|
350 |
+
}
|
351 |
+
|
352 |
+
# ========== GRADIO INTERFACE ==========
|
353 |
+
def create_interface():
|
354 |
+
system = AntiScalpingSystem()
|
355 |
+
|
356 |
+
def process_transaction(
|
357 |
+
name, email, user_id, event_name, ticket_type,
|
358 |
+
ticket_quantity, original_price, demand_level, proposed_resale_price
|
359 |
+
):
|
360 |
+
"""Process the transaction and return formatted results"""
|
361 |
+
|
362 |
+
# Validate inputs
|
363 |
+
if not all([name, email, user_id, event_name]):
|
364 |
+
return "Please fill in all required fields"
|
365 |
+
|
366 |
+
try:
|
367 |
+
original_price = float(original_price)
|
368 |
+
proposed_resale_price = float(proposed_resale_price)
|
369 |
+
ticket_quantity = int(ticket_quantity)
|
370 |
+
except ValueError:
|
371 |
+
return "Please enter valid numbers for prices and quantity"
|
372 |
+
|
373 |
+
# Process through the system
|
374 |
+
result = system.process_ticket_transaction(
|
375 |
+
name=name,
|
376 |
+
email=email,
|
377 |
+
user_id=user_id,
|
378 |
+
event_name=event_name,
|
379 |
+
ticket_type=ticket_type,
|
380 |
+
ticket_quantity=ticket_quantity,
|
381 |
+
original_price=original_price,
|
382 |
+
demand_level=demand_level,
|
383 |
+
proposed_resale_price=proposed_resale_price
|
384 |
+
)
|
385 |
+
|
386 |
+
# Format the output
|
387 |
+
output = f"""
|
388 |
+
# π« Anti-Scalping System Report
|
389 |
+
|
390 |
+
## π€ User Verification
|
391 |
+
- **User ID**: {result['verification']['user_id']}
|
392 |
+
- **Verified**: {'β
Yes' if result['verification']['is_verified'] else 'β No'}
|
393 |
+
- **Risk Score**: {result['verification']['risk_score']:.2f}
|
394 |
+
- **Verification Level**: {result['verification']['verification_level']}
|
395 |
+
|
396 |
+
## π Scalping Detection
|
397 |
+
- **Scalper Detected**: {'π¨ Yes' if result['scalping_detection']['is_scalper'] else 'β
No'}
|
398 |
+
- **Confidence**: {result['scalping_detection']['confidence']:.2%}
|
399 |
+
- **Purchase Velocity**: {result['scalping_detection']['purchase_velocity']} purchases/hour
|
400 |
+
- **IP Duplicates**: {result['scalping_detection']['ip_duplicates']}
|
401 |
+
- **Flags**: {', '.join(result['scalping_detection']['flags']) if result['scalping_detection']['flags'] else 'None'}
|
402 |
+
|
403 |
+
## π° Pricing Analysis
|
404 |
+
- **Original Price**: ${result['pricing']['original_price']:.2f}
|
405 |
+
- **Proposed Resale**: ${result['pricing']['recommended_resale_price']:.2f}
|
406 |
+
- **Demand Level**: {result['pricing']['demand_level']}
|
407 |
+
- **Price Ratio**: {result['pricing']['recommended_resale_price']/result['pricing']['original_price']:.2f}x
|
408 |
+
"""
|
409 |
+
|
410 |
+
if result['pricing'].get('profit_margin'):
|
411 |
+
output += f"- **Profit Margin**: {result['pricing']['profit_margin']:.1f}%\n"
|
412 |
+
elif result['pricing'].get('loss_percentage'):
|
413 |
+
output += f"- **Loss**: {result['pricing']['loss_percentage']:.1f}%\n"
|
414 |
+
|
415 |
+
output += f"""
|
416 |
+
## β
Compliance Check
|
417 |
+
- **Compliant**: {'β
Yes' if result['compliance']['is_compliant'] else 'β No'}
|
418 |
+
- **Resale Allowed**: {'β
Yes' if result['compliance']['resale_allowed'] else 'β No'}
|
419 |
+
- **Max Allowed Price**: ${result['compliance']['max_allowed_price']:.2f}
|
420 |
+
- **Violations**: {', '.join(result['compliance']['violations']) if result['compliance']['violations'] else 'None'}
|
421 |
+
|
422 |
+
## π Final Decision: **{result['final_decision']}**
|
423 |
+
|
424 |
+
### Action Items:
|
425 |
+
"""
|
426 |
+
for action in result['action_items']:
|
427 |
+
output += f"- {action}\n"
|
428 |
+
|
429 |
+
return output
|
430 |
+
|
431 |
+
# Create Gradio interface
|
432 |
+
interface = gr.Interface(
|
433 |
+
fn=process_transaction,
|
434 |
+
inputs=[
|
435 |
+
gr.Textbox(label="Full Name", placeholder="John Doe"),
|
436 |
+
gr.Textbox(label="Email", placeholder="john@example.com"),
|
437 |
+
gr.Textbox(label="User ID", placeholder="USER123"),
|
438 |
+
gr.Textbox(label="Event Name", placeholder="Taylor Swift - Eras Tour"),
|
439 |
+
gr.Dropdown(
|
440 |
+
label="Ticket Type",
|
441 |
+
choices=["General Admission", "VIP", "Premium", "Standard"],
|
442 |
+
value="Standard"
|
443 |
+
),
|
444 |
+
gr.Number(label="Ticket Quantity", value=1, minimum=1, maximum=10),
|
445 |
+
gr.Number(label="Original Ticket Price ($)", value=100),
|
446 |
+
gr.Radio(
|
447 |
+
label="Current Demand Level",
|
448 |
+
choices=["low", "medium", "high"],
|
449 |
+
value="medium"
|
450 |
+
),
|
451 |
+
gr.Number(label="Proposed Resale Price ($)", value=150)
|
452 |
+
],
|
453 |
+
outputs=gr.Markdown(),
|
454 |
+
title="π« Anti-Scalping Ticketing System",
|
455 |
+
description="""
|
456 |
+
This AI-powered system helps prevent ticket scalping by:
|
457 |
+
- Verifying user identity and history
|
458 |
+
- Detecting scalping patterns and behaviors
|
459 |
+
- Recommending fair resale prices based on demand
|
460 |
+
- Ensuring compliance with anti-scalping policies
|
461 |
+
|
462 |
+
Enter the ticket transaction details below to see if it should be approved.
|
463 |
+
""",
|
464 |
+
examples=[
|
465 |
+
["John Smith", "john@gmail.com", "USER001", "Taylor Swift - Eras Tour", "VIP", 2, 500, "high", 750],
|
466 |
+
["Jane Doe", "jane@company.com", "USER002", "NBA Finals Game 7", "Premium", 4, 300, "high", 1200],
|
467 |
+
["Bob Wilson", "bob@email.com", "USER003", "Local Concert", "General Admission", 1, 50, "low", 40],
|
468 |
+
],
|
469 |
+
theme=gr.themes.Soft()
|
470 |
+
)
|
471 |
+
|
472 |
+
return interface
|
473 |
+
|
474 |
+
# Main execution
|
475 |
+
if __name__ == "__main__":
|
476 |
+
interface = create_interface()
|
477 |
+
interface.launch(share=True)
|