File size: 6,729 Bytes
f8c8e08
 
af3beff
f8c8e08
af3beff
 
f8c8e08
af3beff
 
 
f8c8e08
 
 
af3beff
3b40825
f8c8e08
af3beff
f8c8e08
 
af3beff
f8c8e08
 
af3beff
f8c8e08
 
af3beff
 
f8c8e08
 
 
af3beff
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c8e08
af3beff
 
 
 
 
 
 
 
 
 
 
 
f8c8e08
af3beff
f8c8e08
 
af3beff
 
 
f8c8e08
af3beff
 
 
 
f8c8e08
 
 
 
 
af3beff
f8c8e08
 
 
 
af3beff
f8c8e08
af3beff
 
 
 
 
 
 
 
 
f8c8e08
 
af3beff
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c8e08
 
af3beff
f8c8e08
af3beff
 
f8c8e08
 
 
af3beff
f8c8e08
af3beff
 
 
f8c8e08
af3beff
f8c8e08
af3beff
 
 
 
 
f8c8e08
 
af3beff
 
 
 
f8c8e08
 
af3beff
f8c8e08
 
 
 
af3beff
f8c8e08
 
 
af3beff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8c8e08
3b40825
af3beff
 
3b40825
f8c8e08
af3beff
0c8a744
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import asyncio
import json
import urllib3
import requests

from dotenv import load_dotenv
from openai import AzureOpenAI

# crawl4ai / Playwright
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig
from crawl4ai.content_filter_strategy import PruningContentFilter
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator

import gradio as gr

# --- Disable SSL warnings (keep if your SERPER endpoint dislikes verification) ---
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

# --- Load .env (also set these as HF Space Secrets) ---
load_dotenv()

# --- Azure OpenAI client ---
client = AzureOpenAI(
    api_key=os.getenv("AZURE_OPENAI_KEY").strip(),
    api_version=os.getenv("AZURE_OPENAI_API_VERSION", "2025-01-01-preview"),
    azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT").strip(),
)

SERPER_API_KEY = os.getenv("SERPER_API_KEY").strip()
DEPLOYMENT_NAME = os.getenv("AZURE_OPENAI_DEPLOYMENT", "gpt-4.1").strip()  # Your Azure model deployment name


# -------------------------
# Search (Serper) utilities
# -------------------------
def search_serper(query: str):
    """
    Returns a short list of {title, snippet, url} for the query.
    """
    if not SERPER_API_KEY:
        raise RuntimeError("SERPER_API_KEY is not set")

    headers = {"X-API-KEY": SERPER_API_KEY, "Content-Type": "application/json"}
    payload = {"q": query}

    # verify=False because the original code disabled SSL warnings
    resp = requests.post("https://google.serper.dev/search", headers=headers, json=payload, verify=False)
    resp.raise_for_status()
    results = resp.json()

    out = []
    for result in results.get("organic", [])[:3]:
        out.append({
            "title": result.get("title", ""),
            "snippet": result.get("snippet", ""),
            "url": result.get("link", "")
        })
    return out


# -------------------------
# Crawl utilities
# -------------------------
async def crawl_to_markdown(url: str) -> str:
    """
    Crawl a URL and return markdown (fallback to raw if needed).
    Assumes Playwright + Chromium is available in the Docker image.
    """
    try:
        browser_conf = BrowserConfig(headless=True, verbose=False)
        filter_strategy = PruningContentFilter()
        md_gen = DefaultMarkdownGenerator(content_filter=filter_strategy)
        run_conf = CrawlerRunConfig(markdown_generator=md_gen)

        async with AsyncWebCrawler(config=browser_conf) as crawler:
            result = await crawler.arun(url=url, config=run_conf)
            return result.markdown.fit_markdown or result.markdown.raw_markdown or ""
    except Exception as e:
        return f"Crawl error for {url}: {e}"


# -------------------------
# LLM orchestration
# -------------------------
async def generate_answer_with_crawling(question: str):
    """
    Deep mode: search + crawl + synthesize with Azure OpenAI.
    Returns (answer, sources_list)
    """
    try:
        search_results = search_serper(question)

        crawled_pieces = []
        for r in search_results:
            url = r["url"]
            title = r["title"] or url
            md = await crawl_to_markdown(url)

            # Keep it small to avoid tokens blow-up
            snippet = (md or r["snippet"])[:2000]
            block = f"## {title}\nSource: {url}\n\n{snippet}\n\n"
            crawled_pieces.append(block)

        context = "\n".join(crawled_pieces) or "No crawl content available."

        messages = [
            {"role": "system", "content": "You are a helpful assistant that answers questions using detailed web content. Provide citations with URLs when possible."},
            {"role": "user", "content": f"Based on the following web content, answer the question. Include relevant citations.\n\nContent:\n{context}\n\nQuestion: {question}"}
        ]

        resp = client.chat.completions.create(
            model=DEPLOYMENT_NAME,
            messages=messages,
            temperature=0.8,
            max_tokens=800,
        )
        answer = resp.choices[0].message.content
        return answer, search_results

    except Exception as e:
        return f"Error (deep): {e}", []


def generate_answer_quick(question: str):
    """
    Quick mode: search snippets only + Azure OpenAI.
    """
    search_results = search_serper(question)
    snippets = []
    for r in search_results:
        title = r["title"]
        snippet = r["snippet"]
        url = r["url"]
        snippets.append(f"{title}: {snippet} ({url})")

    context = "\n".join(snippets) or "No search snippets available."
    messages = [
        {"role": "system", "content": "You are a helpful assistant that answers using real-time search context."},
        {"role": "user", "content": f"Context:\n{context}\n\nQuestion: {question}"}
    ]
    resp = client.chat.completions.create(
        model=DEPLOYMENT_NAME,
        messages=messages,
        temperature=0.8,
        max_tokens=800,
    )
    return resp.choices[0].message.content, search_results


# -------------------------
# Gradio function
# -------------------------
async def search_fn(question: str, mode: str):
    """
    Gradio-servable function. Returns:
      - Markdown answer
      - JSON of sources
    """
    mode = (mode or "quick").lower()
    if not question.strip():
        return "⚠️ Please enter a question.", "[]"

    if mode == "deep":
        answer, sources = await generate_answer_with_crawling(question)
    else:
        # run sync function in a thread so the Gradio loop is not blocked
        answer, sources = await asyncio.to_thread(generate_answer_quick, question)

    return answer, json.dumps(sources, indent=2)


# -------------------------
# Gradio UI
# -------------------------
with gr.Blocks(title="Search Assistant") as demo:
    gr.Markdown("# 🔎 Search Assistant\nAsk a question. Pick **Quick** or **Deep** (crawls the top results).")

    with gr.Row():
        txt = gr.Textbox(label="Your question", placeholder="e.g., What's new in Python 3.12?", lines=3)
    with gr.Row():
        mode = gr.Radio(choices=["quick", "deep"], value="quick", label="Mode")
    run_btn = gr.Button("Search")
    with gr.Row():
        answer_out = gr.Markdown(label="Answer")
    with gr.Row():
        sources_out = gr.JSON(label="Sources (top 3)")

    run_btn.click(
        fn=search_fn,
        inputs=[txt, mode],
        outputs=[answer_out, sources_out]
    )

# Expose API (Gradio does this automatically). In Spaces:
# POST /run/predict with {"data": ["your question", "quick"]}

if __name__ == "__main__":
    # In HF Spaces Docker, Gradio is launched by this script.
    demo.launch(server_name="0.0.0.0", server_port=7860, pwa=True)