File size: 7,062 Bytes
8d272fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
"""
Configuration for LLaVA models.
"""

from dataclasses import dataclass
from typing import Optional, List, Dict, Any


@dataclass
class VisionConfig:
    """Configuration for the vision encoder."""
    model_name: str = "openai/clip-vit-large-patch14-336"
    image_size: int = 336
    patch_size: int = 14
    hidden_size: int = 1024
    num_attention_heads: int = 16
    num_hidden_layers: int = 24
    intermediate_size: int = 4096
    projection_dim: int = 768
    dropout: float = 0.0
    attention_dropout: float = 0.0


@dataclass
class LanguageConfig:
    """Configuration for the language model."""
    model_name: str = "lmsys/vicuna-7b-v1.5"
    hidden_size: int = 4096
    num_attention_heads: int = 32
    num_hidden_layers: int = 32
    intermediate_size: int = 11008
    max_position_embeddings: int = 2048
    vocab_size: int = 32000
    rms_norm_eps: float = 1e-6
    use_cache: bool = True
    rope_theta: float = 10000.0


@dataclass
class ProjectorConfig:
    """Configuration for the projection layer."""
    input_dim: int = 1024  # Vision encoder hidden size
    hidden_dim: int = 4096  # Projection hidden dimension
    output_dim: int = 4096  # Language model hidden size
    dropout: float = 0.1
    num_layers: int = 2
    activation: str = "gelu"


@dataclass
class TrainingConfig:
    """Configuration for training."""
    batch_size: int = 32
    gradient_accumulation_steps: int = 1
    learning_rate: float = 2e-5
    weight_decay: float = 0.0
    num_train_epochs: int = 1
    max_steps: int = -1
    warmup_steps: int = 0
    lr_scheduler_type: str = "cosine"
    logging_steps: int = 100
    save_steps: int = 1000
    eval_steps: int = 1000
    save_total_limit: int = 3
    fp16: bool = True
    bf16: bool = False
    seed: int = 42
    gradient_checkpointing: bool = False
    optim: str = "adamw_torch"


@dataclass
class LLaVAConfig:
    """Configuration for the LLaVA model."""
    vision: VisionConfig = VisionConfig()
    language: LanguageConfig = LanguageConfig()
    projector: ProjectorConfig = ProjectorConfig()
    training: TrainingConfig = TrainingConfig()
    
    # Additional configurations
    max_length: int = 2048
    temperature: float = 0.7
    top_p: float = 0.9
    repetition_penalty: float = 1.0
    
    @classmethod
    def from_dict(cls, config_dict: Dict[str, Any]) -> "LLaVAConfig":
        """Create a configuration from a dictionary."""
        vision_config = VisionConfig(**config_dict.get("vision", {}))
        language_config = LanguageConfig(**config_dict.get("language", {}))
        projector_config = ProjectorConfig(**config_dict.get("projector", {}))
        training_config = TrainingConfig(**config_dict.get("training", {}))
        
        # Get additional configurations
        additional_config = {k: v for k, v in config_dict.items() 
                            if k not in ["vision", "language", "projector", "training"]}
        
        # Create and return the configuration
        config = cls(
            vision=vision_config,
            language=language_config,
            projector=projector_config,
            training=training_config,
            **additional_config
        )
        
        return config
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert the configuration to a dictionary."""
        config_dict = {
            "vision": {
                "model_name": self.vision.model_name,
                "image_size": self.vision.image_size,
                "patch_size": self.vision.patch_size,
                "hidden_size": self.vision.hidden_size,
                "num_attention_heads": self.vision.num_attention_heads,
                "num_hidden_layers": self.vision.num_hidden_layers,
                "intermediate_size": self.vision.intermediate_size,
                "projection_dim": self.vision.projection_dim,
                "dropout": self.vision.dropout,
                "attention_dropout": self.vision.attention_dropout
            },
            "language": {
                "model_name": self.language.model_name,
                "hidden_size": self.language.hidden_size,
                "num_attention_heads": self.language.num_attention_heads,
                "num_hidden_layers": self.language.num_hidden_layers,
                "intermediate_size": self.language.intermediate_size,
                "max_position_embeddings": self.language.max_position_embeddings,
                "vocab_size": self.language.vocab_size,
                "rms_norm_eps": self.language.rms_norm_eps,
                "use_cache": self.language.use_cache,
                "rope_theta": self.language.rope_theta
            },
            "projector": {
                "input_dim": self.projector.input_dim,
                "hidden_dim": self.projector.hidden_dim,
                "output_dim": self.projector.output_dim,
                "dropout": self.projector.dropout,
                "num_layers": self.projector.num_layers,
                "activation": self.projector.activation
            },
            "training": {
                "batch_size": self.training.batch_size,
                "gradient_accumulation_steps": self.training.gradient_accumulation_steps,
                "learning_rate": self.training.learning_rate,
                "weight_decay": self.training.weight_decay,
                "num_train_epochs": self.training.num_train_epochs,
                "max_steps": self.training.max_steps,
                "warmup_steps": self.training.warmup_steps,
                "lr_scheduler_type": self.training.lr_scheduler_type,
                "logging_steps": self.training.logging_steps,
                "save_steps": self.training.save_steps,
                "eval_steps": self.training.eval_steps,
                "save_total_limit": self.training.save_total_limit,
                "fp16": self.training.fp16,
                "bf16": self.training.bf16,
                "seed": self.training.seed,
                "gradient_checkpointing": self.training.gradient_checkpointing,
                "optim": self.training.optim
            },
            "max_length": self.max_length,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "repetition_penalty": self.repetition_penalty
        }
        
        return config_dict


# Default configurations for different model sizes
LLAVA_7B_CONFIG = LLaVAConfig(
    language=LanguageConfig(
        model_name="lmsys/vicuna-7b-v1.5",
        hidden_size=4096,
        num_attention_heads=32,
        num_hidden_layers=32,
        intermediate_size=11008
    ),
    projector=ProjectorConfig(
        input_dim=1024,
        hidden_dim=4096,
        output_dim=4096
    )
)

LLAVA_13B_CONFIG = LLaVAConfig(
    language=LanguageConfig(
        model_name="lmsys/vicuna-13b-v1.5",
        hidden_size=5120,
        num_attention_heads=40,
        num_hidden_layers=40,
        intermediate_size=13824
    ),
    projector=ProjectorConfig(
        input_dim=1024,
        hidden_dim=5120,
        output_dim=5120
    )
)