Spaces:
Sleeping
Sleeping
File size: 7,667 Bytes
e5d40e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# LLaVA Implementation Developer Guide
## Overview
This guide is intended for developers who want to contribute to or extend the LLaVA implementation. The project is structured as a Python package with a Gradio web interface, using modern best practices and tools.
## Project Structure
```
llava_implementation/
βββ src/ # Source code
β βββ api/ # API endpoints and FastAPI app
β β βββ __init__.py
β β βββ app.py # Gradio interface
β βββ models/ # Model implementations
β β βββ __init__.py
β β βββ llava_model.py # LLaVA model wrapper
β βββ utils/ # Utility functions
β β βββ __init__.py
β β βββ logging.py # Logging utilities
β βββ configs/ # Configuration files
β βββ __init__.py
β βββ settings.py # Application settings
βββ tests/ # Test suite
β βββ __init__.py
β βββ test_model.py # Model tests
βββ docs/ # Documentation
β βββ api/ # API documentation
β βββ examples/ # Usage examples
β βββ guides/ # User and developer guides
βββ assets/ # Static assets
β βββ images/ # Example images
β βββ icons/ # UI icons
βββ scripts/ # Utility scripts
βββ examples/ # Example images for the web interface
```
## Development Setup
### Prerequisites
- Python 3.8+
- Git
- CUDA-capable GPU (recommended)
- Virtual environment tool (venv, conda, etc.)
### Installation
1. Clone the repository:
```bash
git clone https://github.com/Prashant-ambati/llava-implementation.git
cd llava-implementation
```
2. Create and activate a virtual environment:
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```
3. Install development dependencies:
```bash
pip install -r requirements.txt
pip install -r requirements-dev.txt # Development dependencies
```
### Development Tools
1. **Code Formatting**
- Black for code formatting
- isort for import sorting
- flake8 for linting
2. **Testing**
- pytest for testing
- pytest-cov for coverage
- pytest-mock for mocking
3. **Type Checking**
- mypy for static type checking
- types-* packages for type hints
## Code Style
### Python Style Guide
1. Follow PEP 8 guidelines
2. Use type hints
3. Write docstrings (Google style)
4. Keep functions focused and small
5. Use meaningful variable names
### Example
```python
from typing import Optional, List
from PIL import Image
def process_image(
image: Image.Image,
prompt: str,
max_tokens: Optional[int] = None
) -> List[str]:
"""
Process an image with the given prompt.
Args:
image: Input image as PIL Image
prompt: Text prompt for the model
max_tokens: Optional maximum tokens to generate
Returns:
List of generated responses
Raises:
ValueError: If image is invalid
RuntimeError: If model fails to process
"""
# Implementation
```
## Testing
### Running Tests
```bash
# Run all tests
pytest
# Run with coverage
pytest --cov=src
# Run specific test file
pytest tests/test_model.py
# Run with verbose output
pytest -v
```
### Writing Tests
1. Use pytest fixtures
2. Mock external dependencies
3. Test edge cases
4. Include both unit and integration tests
Example test:
```python
import pytest
from PIL import Image
def test_process_image(model, sample_image):
"""Test image processing functionality."""
prompt = "What color is this image?"
response = model.process_image(
image=sample_image,
prompt=prompt
)
assert isinstance(response, str)
assert len(response) > 0
```
## Model Development
### Adding New Models
1. Create a new model class in `src/models/`
2. Implement required methods
3. Add tests
4. Update documentation
Example:
```python
class NewModel:
"""New model implementation."""
def __init__(self, config: dict):
"""Initialize the model."""
self.config = config
self.model = self._load_model()
def process(self, *args, **kwargs):
"""Process inputs and generate output."""
pass
```
### Model Configuration
1. Add configuration in `src/configs/settings.py`
2. Use environment variables for secrets
3. Document all parameters
## API Development
### Adding New Endpoints
1. Create new endpoint in `src/api/app.py`
2. Add input validation
3. Implement error handling
4. Add tests
5. Update documentation
### Error Handling
1. Use custom exceptions
2. Implement proper logging
3. Return appropriate status codes
4. Include error messages
Example:
```python
class ModelError(Exception):
"""Base exception for model errors."""
pass
def process_request(request):
try:
result = model.process(request)
return result
except ModelError as e:
logger.error(f"Model error: {e}")
raise HTTPException(status_code=500, detail=str(e))
```
## Deployment
### Local Deployment
1. Build the package:
```bash
python -m build
```
2. Run the server:
```bash
python src/api/app.py
```
### Hugging Face Spaces
1. Update `README.md` with Space metadata
2. Ensure all dependencies are in `requirements.txt`
3. Test the Space locally
4. Push changes to the Space
### Production Deployment
1. Set up proper logging
2. Configure security measures
3. Implement rate limiting
4. Set up monitoring
5. Use environment variables
## Contributing
### Workflow
1. Fork the repository
2. Create a feature branch
3. Make changes
4. Run tests
5. Update documentation
6. Create a pull request
### Pull Request Process
1. Update documentation
2. Add tests
3. Ensure CI passes
4. Get code review
5. Address feedback
6. Merge when approved
## Performance Optimization
### Model Optimization
1. Use model quantization
2. Implement caching
3. Batch processing
4. GPU optimization
### API Optimization
1. Response compression
2. Request validation
3. Connection pooling
4. Caching strategies
## Security
### Best Practices
1. Input validation
2. Error handling
3. Rate limiting
4. Secure configuration
5. Regular updates
### Security Checklist
- [ ] Validate all inputs
- [ ] Sanitize outputs
- [ ] Use secure dependencies
- [ ] Implement rate limiting
- [ ] Set up monitoring
- [ ] Regular security audits
## Monitoring and Logging
### Logging
1. Use structured logging
2. Include context
3. Set appropriate levels
4. Rotate logs
### Monitoring
1. Track key metrics
2. Set up alerts
3. Monitor resources
4. Track errors
## Future Development
### Planned Features
1. Video support
2. Batch processing
3. Model fine-tuning
4. API authentication
5. Advanced caching
### Contributing Ideas
1. Open issues
2. Discuss in PRs
3. Join discussions
4. Share use cases
## Resources
### Documentation
- [Python Documentation](https://docs.python.org/)
- [Gradio Documentation](https://gradio.app/docs/)
- [Hugging Face Docs](https://huggingface.co/docs)
- [Pytest Documentation](https://docs.pytest.org/)
### Tools
- [Black](https://black.readthedocs.io/)
- [isort](https://pycqa.github.io/isort/)
- [flake8](https://flake8.pycqa.org/)
- [mypy](https://mypy.readthedocs.io/)
### Community
- [GitHub Issues](https://github.com/Prashant-ambati/llava-implementation/issues)
- [Hugging Face Forums](https://discuss.huggingface.co/)
- [Stack Overflow](https://stackoverflow.com/) |