File size: 7,667 Bytes
e5d40e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# LLaVA Implementation Developer Guide

## Overview

This guide is intended for developers who want to contribute to or extend the LLaVA implementation. The project is structured as a Python package with a Gradio web interface, using modern best practices and tools.

## Project Structure

```
llava_implementation/
β”œβ”€β”€ src/                    # Source code
β”‚   β”œβ”€β”€ api/               # API endpoints and FastAPI app
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   └── app.py        # Gradio interface
β”‚   β”œβ”€β”€ models/            # Model implementations
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   └── llava_model.py # LLaVA model wrapper
β”‚   β”œβ”€β”€ utils/             # Utility functions
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   └── logging.py     # Logging utilities
β”‚   └── configs/           # Configuration files
β”‚       β”œβ”€β”€ __init__.py
β”‚       └── settings.py    # Application settings
β”œβ”€β”€ tests/                 # Test suite
β”‚   β”œβ”€β”€ __init__.py
β”‚   └── test_model.py      # Model tests
β”œβ”€β”€ docs/                  # Documentation
β”‚   β”œβ”€β”€ api/              # API documentation
β”‚   β”œβ”€β”€ examples/         # Usage examples
β”‚   └── guides/           # User and developer guides
β”œβ”€β”€ assets/               # Static assets
β”‚   β”œβ”€β”€ images/          # Example images
β”‚   └── icons/           # UI icons
β”œβ”€β”€ scripts/              # Utility scripts
└── examples/             # Example images for the web interface
```

## Development Setup

### Prerequisites

- Python 3.8+
- Git
- CUDA-capable GPU (recommended)
- Virtual environment tool (venv, conda, etc.)

### Installation

1. Clone the repository:
```bash
git clone https://github.com/Prashant-ambati/llava-implementation.git
cd llava-implementation
```

2. Create and activate a virtual environment:
```bash
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
```

3. Install development dependencies:
```bash
pip install -r requirements.txt
pip install -r requirements-dev.txt  # Development dependencies
```

### Development Tools

1. **Code Formatting**
   - Black for code formatting
   - isort for import sorting
   - flake8 for linting

2. **Testing**
   - pytest for testing
   - pytest-cov for coverage
   - pytest-mock for mocking

3. **Type Checking**
   - mypy for static type checking
   - types-* packages for type hints

## Code Style

### Python Style Guide

1. Follow PEP 8 guidelines
2. Use type hints
3. Write docstrings (Google style)
4. Keep functions focused and small
5. Use meaningful variable names

### Example

```python
from typing import Optional, List
from PIL import Image

def process_image(
    image: Image.Image,
    prompt: str,
    max_tokens: Optional[int] = None
) -> List[str]:
    """
    Process an image with the given prompt.
    
    Args:
        image: Input image as PIL Image
        prompt: Text prompt for the model
        max_tokens: Optional maximum tokens to generate
        
    Returns:
        List of generated responses
        
    Raises:
        ValueError: If image is invalid
        RuntimeError: If model fails to process
    """
    # Implementation
```

## Testing

### Running Tests

```bash
# Run all tests
pytest

# Run with coverage
pytest --cov=src

# Run specific test file
pytest tests/test_model.py

# Run with verbose output
pytest -v
```

### Writing Tests

1. Use pytest fixtures
2. Mock external dependencies
3. Test edge cases
4. Include both unit and integration tests

Example test:
```python
import pytest
from PIL import Image

def test_process_image(model, sample_image):
    """Test image processing functionality."""
    prompt = "What color is this image?"
    response = model.process_image(
        image=sample_image,
        prompt=prompt
    )
    assert isinstance(response, str)
    assert len(response) > 0
```

## Model Development

### Adding New Models

1. Create a new model class in `src/models/`
2. Implement required methods
3. Add tests
4. Update documentation

Example:
```python
class NewModel:
    """New model implementation."""
    
    def __init__(self, config: dict):
        """Initialize the model."""
        self.config = config
        self.model = self._load_model()
    
    def process(self, *args, **kwargs):
        """Process inputs and generate output."""
        pass
```

### Model Configuration

1. Add configuration in `src/configs/settings.py`
2. Use environment variables for secrets
3. Document all parameters

## API Development

### Adding New Endpoints

1. Create new endpoint in `src/api/app.py`
2. Add input validation
3. Implement error handling
4. Add tests
5. Update documentation

### Error Handling

1. Use custom exceptions
2. Implement proper logging
3. Return appropriate status codes
4. Include error messages

Example:
```python
class ModelError(Exception):
    """Base exception for model errors."""
    pass

def process_request(request):
    try:
        result = model.process(request)
        return result
    except ModelError as e:
        logger.error(f"Model error: {e}")
        raise HTTPException(status_code=500, detail=str(e))
```

## Deployment

### Local Deployment

1. Build the package:
```bash
python -m build
```

2. Run the server:
```bash
python src/api/app.py
```

### Hugging Face Spaces

1. Update `README.md` with Space metadata
2. Ensure all dependencies are in `requirements.txt`
3. Test the Space locally
4. Push changes to the Space

### Production Deployment

1. Set up proper logging
2. Configure security measures
3. Implement rate limiting
4. Set up monitoring
5. Use environment variables

## Contributing

### Workflow

1. Fork the repository
2. Create a feature branch
3. Make changes
4. Run tests
5. Update documentation
6. Create a pull request

### Pull Request Process

1. Update documentation
2. Add tests
3. Ensure CI passes
4. Get code review
5. Address feedback
6. Merge when approved

## Performance Optimization

### Model Optimization

1. Use model quantization
2. Implement caching
3. Batch processing
4. GPU optimization

### API Optimization

1. Response compression
2. Request validation
3. Connection pooling
4. Caching strategies

## Security

### Best Practices

1. Input validation
2. Error handling
3. Rate limiting
4. Secure configuration
5. Regular updates

### Security Checklist

- [ ] Validate all inputs
- [ ] Sanitize outputs
- [ ] Use secure dependencies
- [ ] Implement rate limiting
- [ ] Set up monitoring
- [ ] Regular security audits

## Monitoring and Logging

### Logging

1. Use structured logging
2. Include context
3. Set appropriate levels
4. Rotate logs

### Monitoring

1. Track key metrics
2. Set up alerts
3. Monitor resources
4. Track errors

## Future Development

### Planned Features

1. Video support
2. Batch processing
3. Model fine-tuning
4. API authentication
5. Advanced caching

### Contributing Ideas

1. Open issues
2. Discuss in PRs
3. Join discussions
4. Share use cases

## Resources

### Documentation

- [Python Documentation](https://docs.python.org/)
- [Gradio Documentation](https://gradio.app/docs/)
- [Hugging Face Docs](https://huggingface.co/docs)
- [Pytest Documentation](https://docs.pytest.org/)

### Tools

- [Black](https://black.readthedocs.io/)
- [isort](https://pycqa.github.io/isort/)
- [flake8](https://flake8.pycqa.org/)
- [mypy](https://mypy.readthedocs.io/)

### Community

- [GitHub Issues](https://github.com/Prashant-ambati/llava-implementation/issues)
- [Hugging Face Forums](https://discuss.huggingface.co/)
- [Stack Overflow](https://stackoverflow.com/)