# LLaVA Implementation Developer Guide ## Overview This guide is intended for developers who want to contribute to or extend the LLaVA implementation. The project is structured as a Python package with a Gradio web interface, using modern best practices and tools. ## Project Structure ``` llava_implementation/ ├── src/ # Source code │ ├── api/ # API endpoints and FastAPI app │ │ ├── __init__.py │ │ └── app.py # Gradio interface │ ├── models/ # Model implementations │ │ ├── __init__.py │ │ └── llava_model.py # LLaVA model wrapper │ ├── utils/ # Utility functions │ │ ├── __init__.py │ │ └── logging.py # Logging utilities │ └── configs/ # Configuration files │ ├── __init__.py │ └── settings.py # Application settings ├── tests/ # Test suite │ ├── __init__.py │ └── test_model.py # Model tests ├── docs/ # Documentation │ ├── api/ # API documentation │ ├── examples/ # Usage examples │ └── guides/ # User and developer guides ├── assets/ # Static assets │ ├── images/ # Example images │ └── icons/ # UI icons ├── scripts/ # Utility scripts └── examples/ # Example images for the web interface ``` ## Development Setup ### Prerequisites - Python 3.8+ - Git - CUDA-capable GPU (recommended) - Virtual environment tool (venv, conda, etc.) ### Installation 1. Clone the repository: ```bash git clone https://github.com/Prashant-ambati/llava-implementation.git cd llava-implementation ``` 2. Create and activate a virtual environment: ```bash python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate ``` 3. Install development dependencies: ```bash pip install -r requirements.txt pip install -r requirements-dev.txt # Development dependencies ``` ### Development Tools 1. **Code Formatting** - Black for code formatting - isort for import sorting - flake8 for linting 2. **Testing** - pytest for testing - pytest-cov for coverage - pytest-mock for mocking 3. **Type Checking** - mypy for static type checking - types-* packages for type hints ## Code Style ### Python Style Guide 1. Follow PEP 8 guidelines 2. Use type hints 3. Write docstrings (Google style) 4. Keep functions focused and small 5. Use meaningful variable names ### Example ```python from typing import Optional, List from PIL import Image def process_image( image: Image.Image, prompt: str, max_tokens: Optional[int] = None ) -> List[str]: """ Process an image with the given prompt. Args: image: Input image as PIL Image prompt: Text prompt for the model max_tokens: Optional maximum tokens to generate Returns: List of generated responses Raises: ValueError: If image is invalid RuntimeError: If model fails to process """ # Implementation ``` ## Testing ### Running Tests ```bash # Run all tests pytest # Run with coverage pytest --cov=src # Run specific test file pytest tests/test_model.py # Run with verbose output pytest -v ``` ### Writing Tests 1. Use pytest fixtures 2. Mock external dependencies 3. Test edge cases 4. Include both unit and integration tests Example test: ```python import pytest from PIL import Image def test_process_image(model, sample_image): """Test image processing functionality.""" prompt = "What color is this image?" response = model.process_image( image=sample_image, prompt=prompt ) assert isinstance(response, str) assert len(response) > 0 ``` ## Model Development ### Adding New Models 1. Create a new model class in `src/models/` 2. Implement required methods 3. Add tests 4. Update documentation Example: ```python class NewModel: """New model implementation.""" def __init__(self, config: dict): """Initialize the model.""" self.config = config self.model = self._load_model() def process(self, *args, **kwargs): """Process inputs and generate output.""" pass ``` ### Model Configuration 1. Add configuration in `src/configs/settings.py` 2. Use environment variables for secrets 3. Document all parameters ## API Development ### Adding New Endpoints 1. Create new endpoint in `src/api/app.py` 2. Add input validation 3. Implement error handling 4. Add tests 5. Update documentation ### Error Handling 1. Use custom exceptions 2. Implement proper logging 3. Return appropriate status codes 4. Include error messages Example: ```python class ModelError(Exception): """Base exception for model errors.""" pass def process_request(request): try: result = model.process(request) return result except ModelError as e: logger.error(f"Model error: {e}") raise HTTPException(status_code=500, detail=str(e)) ``` ## Deployment ### Local Deployment 1. Build the package: ```bash python -m build ``` 2. Run the server: ```bash python src/api/app.py ``` ### Hugging Face Spaces 1. Update `README.md` with Space metadata 2. Ensure all dependencies are in `requirements.txt` 3. Test the Space locally 4. Push changes to the Space ### Production Deployment 1. Set up proper logging 2. Configure security measures 3. Implement rate limiting 4. Set up monitoring 5. Use environment variables ## Contributing ### Workflow 1. Fork the repository 2. Create a feature branch 3. Make changes 4. Run tests 5. Update documentation 6. Create a pull request ### Pull Request Process 1. Update documentation 2. Add tests 3. Ensure CI passes 4. Get code review 5. Address feedback 6. Merge when approved ## Performance Optimization ### Model Optimization 1. Use model quantization 2. Implement caching 3. Batch processing 4. GPU optimization ### API Optimization 1. Response compression 2. Request validation 3. Connection pooling 4. Caching strategies ## Security ### Best Practices 1. Input validation 2. Error handling 3. Rate limiting 4. Secure configuration 5. Regular updates ### Security Checklist - [ ] Validate all inputs - [ ] Sanitize outputs - [ ] Use secure dependencies - [ ] Implement rate limiting - [ ] Set up monitoring - [ ] Regular security audits ## Monitoring and Logging ### Logging 1. Use structured logging 2. Include context 3. Set appropriate levels 4. Rotate logs ### Monitoring 1. Track key metrics 2. Set up alerts 3. Monitor resources 4. Track errors ## Future Development ### Planned Features 1. Video support 2. Batch processing 3. Model fine-tuning 4. API authentication 5. Advanced caching ### Contributing Ideas 1. Open issues 2. Discuss in PRs 3. Join discussions 4. Share use cases ## Resources ### Documentation - [Python Documentation](https://docs.python.org/) - [Gradio Documentation](https://gradio.app/docs/) - [Hugging Face Docs](https://huggingface.co/docs) - [Pytest Documentation](https://docs.pytest.org/) ### Tools - [Black](https://black.readthedocs.io/) - [isort](https://pycqa.github.io/isort/) - [flake8](https://flake8.pycqa.org/) - [mypy](https://mypy.readthedocs.io/) ### Community - [GitHub Issues](https://github.com/Prashant-ambati/llava-implementation/issues) - [Hugging Face Forums](https://discuss.huggingface.co/) - [Stack Overflow](https://stackoverflow.com/)