Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,217 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
audio_recorder_js + """
|
39 |
-
<button onclick="startRecording()">🎤 Start Talking</button>
|
40 |
-
<button onclick="stopRecording()">🛑 Stop</button>
|
41 |
-
<div id="response" style="margin-top: 10px; padding: 10px; border: 1px solid #ccc;"></div>
|
42 |
-
""", height=200
|
43 |
-
)
|
|
|
1 |
import streamlit as st
|
2 |
+
from langchain.chains import RetrievalQA
|
3 |
+
from langchain.vectorstores import Milvus
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
from langchain_groq import ChatGroq
|
7 |
+
import os
|
8 |
+
from docling.document_converter import DocumentConverter, PdfFormatOption
|
9 |
+
from docling.datamodel.base_models import InputFormat
|
10 |
+
from docling.datamodel.pipeline_options import PdfPipelineOptions
|
11 |
+
from docling_core.transforms.chunker.hybrid_chunker import HybridChunker
|
12 |
+
from docling_core.types.doc.document import TableItem
|
13 |
+
from langchain_core.documents import Document
|
14 |
+
import itertools
|
15 |
+
from docling_core.types.doc.labels import DocItemLabel
|
16 |
+
import google.generativeai as genai
|
17 |
+
from PIL import Image
|
18 |
+
import base64
|
19 |
+
import io
|
20 |
|
21 |
+
# Initialize components (similar to your notebook)
|
22 |
+
@st.cache_resource
|
23 |
+
def initialize_components():
|
24 |
+
# Initialize embeddings
|
25 |
+
embeddings_model_path = "ibm-granite/granite-embedding-30m-english"
|
26 |
+
embeddings_model = HuggingFaceEmbeddings(model_name=embeddings_model_path)
|
27 |
+
embeddings_tokenizer = AutoTokenizer.from_pretrained(embeddings_model_path)
|
28 |
+
|
29 |
+
# Initialize language model
|
30 |
+
GROQ_API_KEY = "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"
|
31 |
+
model = ChatGroq(model_name="llama3-70b-8192", api_key=GROQ_API_KEY)
|
32 |
+
|
33 |
+
# Initialize vision model
|
34 |
+
GOOGLE_API_KEY = "AIzaSyBTt66oOvxpLeYn41sR-KkjSYPK2vOAqkU"
|
35 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
36 |
+
vision_model = genai.GenerativeModel(model_name="gemini-1.5-flash")
|
37 |
+
|
38 |
+
return embeddings_model, embeddings_tokenizer, model, vision_model
|
39 |
|
40 |
+
def process_pdf(file_path, embeddings_tokenizer, vision_model):
|
41 |
+
# PDF processing (similar to your notebook)
|
42 |
+
pdf_pipeline_options = PdfPipelineOptions(
|
43 |
+
do_ocr=True,
|
44 |
+
generate_picture_images=True
|
45 |
+
)
|
46 |
+
|
47 |
+
format_options = {
|
48 |
+
InputFormat.PDF: PdfFormatOption(pipeline_options=pdf_pipeline_options),
|
49 |
+
}
|
50 |
+
|
51 |
+
converter = DocumentConverter(format_options=format_options)
|
52 |
+
sources = [file_path]
|
53 |
+
conversions = {
|
54 |
+
source: converter.convert(source=source).document for source in sources
|
55 |
+
}
|
56 |
+
|
57 |
+
# Process text chunks
|
58 |
+
doc_id = 0
|
59 |
+
texts = []
|
60 |
+
|
61 |
+
for source, docling_document in conversions.items():
|
62 |
+
chunker = HybridChunker(tokenizer=embeddings_tokenizer)
|
63 |
|
64 |
+
for chunk in chunker.chunk(docling_document):
|
65 |
+
items = chunk.meta.doc_items
|
66 |
+
|
67 |
+
if len(items) == 1 and isinstance(items[0], TableItem):
|
68 |
+
continue
|
69 |
+
|
70 |
+
refs = "".join(item.get_ref().cref for item in items)
|
71 |
+
text = chunk.text
|
72 |
+
|
73 |
+
document = Document(
|
74 |
+
page_content=text,
|
75 |
+
metadata={
|
76 |
+
"doc_id": (doc_id := doc_id + 1),
|
77 |
+
"source": source,
|
78 |
+
"ref": refs,
|
79 |
+
}
|
80 |
+
)
|
81 |
+
texts.append(document)
|
82 |
+
|
83 |
+
# Process tables (if any)
|
84 |
+
tables = []
|
85 |
+
for source, docling_document in conversions.items():
|
86 |
+
for table in docling_document.tables:
|
87 |
+
if table.label == DocItemLabel.TABLE:
|
88 |
+
ref = table.get_ref().cref
|
89 |
+
text = table.export_to_markdown()
|
90 |
+
|
91 |
+
document = Document(
|
92 |
+
page_content=text,
|
93 |
+
metadata={
|
94 |
+
"doc_id": (doc_id := doc_id + 1),
|
95 |
+
"source": source,
|
96 |
+
"ref": ref,
|
97 |
+
},
|
98 |
+
)
|
99 |
+
tables.append(document)
|
100 |
+
|
101 |
+
# Process images (if any)
|
102 |
+
pictures = []
|
103 |
+
start_doc_id = len(texts) + len(tables) + 1
|
104 |
+
|
105 |
+
for source, docling_document in conversions.items():
|
106 |
+
if hasattr(docling_document, 'pictures') and docling_document.pictures:
|
107 |
+
for picture in docling_document.pictures:
|
108 |
+
try:
|
109 |
+
ref = picture.get_ref().cref
|
110 |
+
image = picture.get_image(docling_document)
|
111 |
+
|
112 |
+
if image:
|
113 |
+
response = vision_model.generate_content([
|
114 |
+
"Extract all text and describe key visual elements in this image. "
|
115 |
+
"Include any numbers, labels, or important details.",
|
116 |
+
image
|
117 |
+
])
|
118 |
+
|
119 |
+
document = Document(
|
120 |
+
page_content=response.text,
|
121 |
+
metadata={
|
122 |
+
"doc_id": doc_id,
|
123 |
+
"source": source,
|
124 |
+
"ref": ref,
|
125 |
+
}
|
126 |
+
)
|
127 |
+
pictures.append(document)
|
128 |
+
doc_id += 1
|
129 |
+
except Exception as e:
|
130 |
+
print(f"Error processing image: {str(e)}")
|
131 |
+
|
132 |
+
return texts + tables + pictures
|
133 |
|
134 |
+
def create_vector_store(docs, embeddings_model):
|
135 |
+
# Create vector store (using Milvus as in your notebook)
|
136 |
+
# Note: You'll need to have Milvus running
|
137 |
+
vector_store = Milvus.from_documents(
|
138 |
+
docs,
|
139 |
+
embeddings_model,
|
140 |
+
connection_args={"host": "127.0.0.1", "port": "19530"},
|
141 |
+
collection_name="pdf_manual"
|
142 |
+
)
|
143 |
+
return vector_store
|
144 |
|
145 |
+
def main():
|
146 |
+
st.title("PDF Manual Chatbot")
|
147 |
+
|
148 |
+
# Initialize components
|
149 |
+
embeddings_model, embeddings_tokenizer, model, vision_model = initialize_components()
|
150 |
+
|
151 |
+
# File upload
|
152 |
+
uploaded_file = st.file_uploader("Upload a PDF manual", type="pdf")
|
153 |
+
|
154 |
+
if uploaded_file is not None:
|
155 |
+
# Save the uploaded file
|
156 |
+
file_path = os.path.join("temp", uploaded_file.name)
|
157 |
+
os.makedirs("temp", exist_ok=True)
|
158 |
+
with open(file_path, "wb") as f:
|
159 |
+
f.write(uploaded_file.getbuffer())
|
160 |
+
|
161 |
+
# Process the PDF
|
162 |
+
with st.spinner("Processing PDF..."):
|
163 |
+
docs = process_pdf(file_path, embeddings_tokenizer, vision_model)
|
164 |
+
vector_store = create_vector_store(docs, embeddings_model)
|
165 |
+
|
166 |
+
st.success("PDF processed successfully!")
|
167 |
+
|
168 |
+
# Initialize chat history
|
169 |
+
if "messages" not in st.session_state:
|
170 |
+
st.session_state.messages = []
|
171 |
+
|
172 |
+
# Display chat messages from history on app rerun
|
173 |
+
for message in st.session_state.messages:
|
174 |
+
with st.chat_message(message["role"]):
|
175 |
+
st.markdown(message["content"])
|
176 |
+
|
177 |
+
# Accept user input
|
178 |
+
if prompt := st.chat_input("Ask a question about the manual"):
|
179 |
+
# Add user message to chat history
|
180 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
181 |
+
|
182 |
+
# Display user message in chat message container
|
183 |
+
with st.chat_message("user"):
|
184 |
+
st.markdown(prompt)
|
185 |
+
|
186 |
+
# Create QA chain
|
187 |
+
qa_chain = RetrievalQA.from_chain_type(
|
188 |
+
llm=model,
|
189 |
+
chain_type="stuff",
|
190 |
+
retriever=vector_store.as_retriever(),
|
191 |
+
return_source_documents=True
|
192 |
+
)
|
193 |
+
|
194 |
+
# Get response
|
195 |
+
with st.spinner("Thinking..."):
|
196 |
+
result = qa_chain({"query": prompt})
|
197 |
+
response = result["result"]
|
198 |
+
source_docs = result["source_documents"]
|
199 |
+
|
200 |
+
# Display assistant response in chat message container
|
201 |
+
with st.chat_message("assistant"):
|
202 |
+
st.markdown(response)
|
203 |
+
|
204 |
+
# Show sources if available
|
205 |
+
if source_docs:
|
206 |
+
with st.expander("Source Documents"):
|
207 |
+
for i, doc in enumerate(source_docs):
|
208 |
+
st.write(f"Source {i+1}:")
|
209 |
+
st.write(doc.page_content)
|
210 |
+
st.write(f"Metadata: {doc.metadata}")
|
211 |
+
st.write("---")
|
212 |
+
|
213 |
+
# Add assistant response to chat history
|
214 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
215 |
|
216 |
+
if __name__ == "__main__":
|
217 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|