|
from typing import List, Optional |
|
|
|
import numpy |
|
|
|
from facefusion import state_manager |
|
from facefusion.common_helper import get_first |
|
from facefusion.face_classifier import classify_face |
|
from facefusion.face_detector import detect_faces, detect_rotated_faces |
|
from facefusion.face_helper import apply_nms, convert_to_face_landmark_5, estimate_face_angle, get_nms_threshold |
|
from facefusion.face_landmarker import detect_face_landmark, estimate_face_landmark_68_5 |
|
from facefusion.face_recognizer import calc_embedding |
|
from facefusion.face_store import get_static_faces, set_static_faces |
|
from facefusion.types import BoundingBox, Face, FaceLandmark5, FaceLandmarkSet, FaceScoreSet, Score, VisionFrame |
|
|
|
|
|
def create_faces(vision_frame : VisionFrame, bounding_boxes : List[BoundingBox], face_scores : List[Score], face_landmarks_5 : List[FaceLandmark5]) -> List[Face]: |
|
faces = [] |
|
nms_threshold = get_nms_threshold(state_manager.get_item('face_detector_model'), state_manager.get_item('face_detector_angles')) |
|
keep_indices = apply_nms(bounding_boxes, face_scores, state_manager.get_item('face_detector_score'), nms_threshold) |
|
|
|
for index in keep_indices: |
|
bounding_box = bounding_boxes[index] |
|
face_score = face_scores[index] |
|
face_landmark_5 = face_landmarks_5[index] |
|
face_landmark_5_68 = face_landmark_5 |
|
face_landmark_68_5 = estimate_face_landmark_68_5(face_landmark_5_68) |
|
face_landmark_68 = face_landmark_68_5 |
|
face_landmark_score_68 = 0.0 |
|
face_angle = estimate_face_angle(face_landmark_68_5) |
|
|
|
if state_manager.get_item('face_landmarker_score') > 0: |
|
face_landmark_68, face_landmark_score_68 = detect_face_landmark(vision_frame, bounding_box, face_angle) |
|
if face_landmark_score_68 > state_manager.get_item('face_landmarker_score'): |
|
face_landmark_5_68 = convert_to_face_landmark_5(face_landmark_68) |
|
|
|
face_landmark_set : FaceLandmarkSet =\ |
|
{ |
|
'5': face_landmark_5, |
|
'5/68': face_landmark_5_68, |
|
'68': face_landmark_68, |
|
'68/5': face_landmark_68_5 |
|
} |
|
face_score_set : FaceScoreSet =\ |
|
{ |
|
'detector': face_score, |
|
'landmarker': face_landmark_score_68 |
|
} |
|
embedding, normed_embedding = calc_embedding(vision_frame, face_landmark_set.get('5/68')) |
|
gender, age, race = classify_face(vision_frame, face_landmark_set.get('5/68')) |
|
faces.append(Face( |
|
bounding_box = bounding_box, |
|
score_set = face_score_set, |
|
landmark_set = face_landmark_set, |
|
angle = face_angle, |
|
embedding = embedding, |
|
normed_embedding = normed_embedding, |
|
gender = gender, |
|
age = age, |
|
race = race |
|
)) |
|
return faces |
|
|
|
|
|
def get_one_face(faces : List[Face], position : int = 0) -> Optional[Face]: |
|
if faces: |
|
position = min(position, len(faces) - 1) |
|
return faces[position] |
|
return None |
|
|
|
|
|
def get_average_face(faces : List[Face]) -> Optional[Face]: |
|
embeddings = [] |
|
normed_embeddings = [] |
|
|
|
if faces: |
|
first_face = get_first(faces) |
|
|
|
for face in faces: |
|
embeddings.append(face.embedding) |
|
normed_embeddings.append(face.normed_embedding) |
|
|
|
return Face( |
|
bounding_box = first_face.bounding_box, |
|
score_set = first_face.score_set, |
|
landmark_set = first_face.landmark_set, |
|
angle = first_face.angle, |
|
embedding = numpy.mean(embeddings, axis = 0), |
|
normed_embedding = numpy.mean(normed_embeddings, axis = 0), |
|
gender = first_face.gender, |
|
age = first_face.age, |
|
race = first_face.race |
|
) |
|
return None |
|
|
|
|
|
def get_many_faces(vision_frames : List[VisionFrame]) -> List[Face]: |
|
many_faces : List[Face] = [] |
|
|
|
for vision_frame in vision_frames: |
|
if numpy.any(vision_frame): |
|
static_faces = get_static_faces(vision_frame) |
|
if static_faces: |
|
many_faces.extend(static_faces) |
|
else: |
|
all_bounding_boxes = [] |
|
all_face_scores = [] |
|
all_face_landmarks_5 = [] |
|
|
|
for face_detector_angle in state_manager.get_item('face_detector_angles'): |
|
if face_detector_angle == 0: |
|
bounding_boxes, face_scores, face_landmarks_5 = detect_faces(vision_frame) |
|
else: |
|
bounding_boxes, face_scores, face_landmarks_5 = detect_rotated_faces(vision_frame, face_detector_angle) |
|
all_bounding_boxes.extend(bounding_boxes) |
|
all_face_scores.extend(face_scores) |
|
all_face_landmarks_5.extend(face_landmarks_5) |
|
|
|
if all_bounding_boxes and all_face_scores and all_face_landmarks_5 and state_manager.get_item('face_detector_score') > 0: |
|
faces = create_faces(vision_frame, all_bounding_boxes, all_face_scores, all_face_landmarks_5) |
|
|
|
if faces: |
|
many_faces.extend(faces) |
|
set_static_faces(vision_frame, faces) |
|
return many_faces |
|
|