|
from functools import lru_cache |
|
from typing import List, Tuple |
|
|
|
import cv2 |
|
import numpy |
|
from cv2.typing import Size |
|
|
|
import facefusion.choices |
|
from facefusion import inference_manager, state_manager |
|
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url |
|
from facefusion.filesystem import resolve_relative_path |
|
from facefusion.thread_helper import conditional_thread_semaphore |
|
from facefusion.types import DownloadScope, DownloadSet, FaceLandmark68, FaceMaskRegion, InferencePool, Mask, ModelSet, Padding, VisionFrame |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: |
|
return\ |
|
{ |
|
'xseg_1': |
|
{ |
|
'hashes': |
|
{ |
|
'face_occluder': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'xseg_1.hash'), |
|
'path': resolve_relative_path('../.assets/models/xseg_1.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_occluder': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'xseg_1.onnx'), |
|
'path': resolve_relative_path('../.assets/models/xseg_1.onnx') |
|
} |
|
}, |
|
'size': (256, 256) |
|
}, |
|
'xseg_2': |
|
{ |
|
'hashes': |
|
{ |
|
'face_occluder': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'xseg_2.hash'), |
|
'path': resolve_relative_path('../.assets/models/xseg_2.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_occluder': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'xseg_2.onnx'), |
|
'path': resolve_relative_path('../.assets/models/xseg_2.onnx') |
|
} |
|
}, |
|
'size': (256, 256) |
|
}, |
|
'xseg_3': |
|
{ |
|
'hashes': |
|
{ |
|
'face_occluder': |
|
{ |
|
'url': resolve_download_url('models-3.2.0', 'xseg_3.hash'), |
|
'path': resolve_relative_path('../.assets/models/xseg_3.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_occluder': |
|
{ |
|
'url': resolve_download_url('models-3.2.0', 'xseg_3.onnx'), |
|
'path': resolve_relative_path('../.assets/models/xseg_3.onnx') |
|
} |
|
}, |
|
'size': (256, 256) |
|
}, |
|
'bisenet_resnet_18': |
|
{ |
|
'hashes': |
|
{ |
|
'face_parser': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.hash'), |
|
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_parser': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.onnx'), |
|
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.onnx') |
|
} |
|
}, |
|
'size': (512, 512) |
|
}, |
|
'bisenet_resnet_34': |
|
{ |
|
'hashes': |
|
{ |
|
'face_parser': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.hash'), |
|
'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_parser': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.onnx'), |
|
'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.onnx') |
|
} |
|
}, |
|
'size': (512, 512) |
|
} |
|
} |
|
|
|
|
|
def get_inference_pool() -> InferencePool: |
|
model_names = [state_manager.get_item('face_occluder_model'), state_manager.get_item('face_parser_model')] |
|
_, model_source_set = collect_model_downloads() |
|
|
|
return inference_manager.get_inference_pool(__name__, model_names, model_source_set) |
|
|
|
|
|
def clear_inference_pool() -> None: |
|
model_names = [ state_manager.get_item('face_occluder_model'), state_manager.get_item('face_parser_model') ] |
|
inference_manager.clear_inference_pool(__name__, model_names) |
|
|
|
|
|
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]: |
|
model_set = create_static_model_set('full') |
|
model_hash_set = {} |
|
model_source_set = {} |
|
|
|
for face_occluder_model in [ 'xseg_1', 'xseg_2', 'xseg_3' ]: |
|
if state_manager.get_item('face_occluder_model') == face_occluder_model: |
|
model_hash_set[face_occluder_model] = model_set.get(face_occluder_model).get('hashes').get('face_occluder') |
|
model_source_set[face_occluder_model] = model_set.get(face_occluder_model).get('sources').get('face_occluder') |
|
|
|
for face_parser_model in [ 'bisenet_resnet_18', 'bisenet_resnet_34' ]: |
|
if state_manager.get_item('face_parser_model') == face_parser_model: |
|
model_hash_set[face_parser_model] = model_set.get(face_parser_model).get('hashes').get('face_parser') |
|
model_source_set[face_parser_model] = model_set.get(face_parser_model).get('sources').get('face_parser') |
|
|
|
return model_hash_set, model_source_set |
|
|
|
|
|
def pre_check() -> bool: |
|
model_hash_set, model_source_set = collect_model_downloads() |
|
|
|
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def create_static_box_mask(crop_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Mask: |
|
blur_amount = int(crop_size[0] * 0.5 * face_mask_blur) |
|
blur_area = max(blur_amount // 2, 1) |
|
box_mask : Mask = numpy.ones(crop_size).astype(numpy.float32) |
|
box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0 |
|
box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0 |
|
box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0 |
|
box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0 |
|
if blur_amount > 0: |
|
box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25) |
|
return box_mask |
|
|
|
|
|
def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask: |
|
face_occluder_model = state_manager.get_item('face_occluder_model') |
|
model_size = create_static_model_set('full').get(face_occluder_model).get('size') |
|
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size) |
|
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255.0 |
|
prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3) |
|
occlusion_mask = forward_occlude_face(prepare_vision_frame) |
|
occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32) |
|
occlusion_mask = cv2.resize(occlusion_mask, crop_vision_frame.shape[:2][::-1]) |
|
occlusion_mask = (cv2.GaussianBlur(occlusion_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2 |
|
return occlusion_mask |
|
|
|
|
|
def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask: |
|
face_parser_model = state_manager.get_item('face_parser_model') |
|
model_size = create_static_model_set('full').get(face_parser_model).get('size') |
|
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size) |
|
prepare_vision_frame = prepare_vision_frame[:, :, ::-1].astype(numpy.float32) / 255.0 |
|
prepare_vision_frame = numpy.subtract(prepare_vision_frame, numpy.array([ 0.485, 0.456, 0.406 ]).astype(numpy.float32)) |
|
prepare_vision_frame = numpy.divide(prepare_vision_frame, numpy.array([ 0.229, 0.224, 0.225 ]).astype(numpy.float32)) |
|
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0) |
|
prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2) |
|
region_mask = forward_parse_face(prepare_vision_frame) |
|
region_mask = numpy.isin(region_mask.argmax(0), [ facefusion.choices.face_mask_region_set.get(face_mask_region) for face_mask_region in face_mask_regions ]) |
|
region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1]) |
|
region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2 |
|
return region_mask |
|
|
|
|
|
def create_mouth_mask(face_landmark_68 : FaceLandmark68) -> Mask: |
|
convex_hull = cv2.convexHull(face_landmark_68[numpy.r_[3:14, 31:36]].astype(numpy.int32)) |
|
mouth_mask : Mask = numpy.zeros((512, 512)).astype(numpy.float32) |
|
mouth_mask = cv2.fillConvexPoly(mouth_mask, convex_hull, 1.0) |
|
mouth_mask = cv2.erode(mouth_mask.clip(0, 1), numpy.ones((21, 3))) |
|
mouth_mask = cv2.GaussianBlur(mouth_mask, (0, 0), sigmaX = 1, sigmaY = 15) |
|
return mouth_mask |
|
|
|
|
|
def forward_occlude_face(prepare_vision_frame : VisionFrame) -> Mask: |
|
face_occluder_model = state_manager.get_item('face_occluder_model') |
|
face_occluder = get_inference_pool().get(face_occluder_model) |
|
|
|
with conditional_thread_semaphore(): |
|
occlusion_mask : Mask = face_occluder.run(None, |
|
{ |
|
'input': prepare_vision_frame |
|
})[0][0] |
|
|
|
return occlusion_mask |
|
|
|
|
|
def forward_parse_face(prepare_vision_frame : VisionFrame) -> Mask: |
|
face_parser_model = state_manager.get_item('face_parser_model') |
|
face_parser = get_inference_pool().get(face_parser_model) |
|
|
|
with conditional_thread_semaphore(): |
|
region_mask : Mask = face_parser.run(None, |
|
{ |
|
'input': prepare_vision_frame |
|
})[0][0] |
|
|
|
return region_mask |
|
|