|
from functools import lru_cache |
|
from typing import Tuple |
|
|
|
import numpy |
|
|
|
from facefusion import inference_manager |
|
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url |
|
from facefusion.face_helper import warp_face_by_face_landmark_5 |
|
from facefusion.filesystem import resolve_relative_path |
|
from facefusion.thread_helper import conditional_thread_semaphore |
|
from facefusion.types import DownloadScope, Embedding, FaceLandmark5, InferencePool, ModelOptions, ModelSet, VisionFrame |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: |
|
return\ |
|
{ |
|
'arcface': |
|
{ |
|
'hashes': |
|
{ |
|
'face_recognizer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_w600k_r50.hash'), |
|
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_recognizer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_w600k_r50.onnx'), |
|
'path': resolve_relative_path('../.assets/models/arcface_w600k_r50.onnx') |
|
} |
|
}, |
|
'template': 'arcface_112_v2', |
|
'size': (112, 112) |
|
} |
|
} |
|
|
|
|
|
def get_inference_pool() -> InferencePool: |
|
model_names = [ 'arcface' ] |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return inference_manager.get_inference_pool(__name__, model_names, model_source_set) |
|
|
|
|
|
def clear_inference_pool() -> None: |
|
model_names = [ 'arcface' ] |
|
inference_manager.clear_inference_pool(__name__, model_names) |
|
|
|
|
|
def get_model_options() -> ModelOptions: |
|
return create_static_model_set('full').get('arcface') |
|
|
|
|
|
def pre_check() -> bool: |
|
model_hash_set = get_model_options().get('hashes') |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) |
|
|
|
|
|
def calc_embedding(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5) -> Tuple[Embedding, Embedding]: |
|
model_template = get_model_options().get('template') |
|
model_size = get_model_options().get('size') |
|
crop_vision_frame, matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_template, model_size) |
|
crop_vision_frame = crop_vision_frame / 127.5 - 1 |
|
crop_vision_frame = crop_vision_frame[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) |
|
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0) |
|
embedding = forward(crop_vision_frame) |
|
embedding = embedding.ravel() |
|
normed_embedding = embedding / numpy.linalg.norm(embedding) |
|
return embedding, normed_embedding |
|
|
|
|
|
def forward(crop_vision_frame : VisionFrame) -> Embedding: |
|
face_recognizer = get_inference_pool().get('face_recognizer') |
|
|
|
with conditional_thread_semaphore(): |
|
embedding = face_recognizer.run(None, |
|
{ |
|
'input': crop_vision_frame |
|
})[0] |
|
|
|
return embedding |
|
|