|
from argparse import ArgumentParser |
|
from functools import lru_cache |
|
from typing import List |
|
|
|
import cv2 |
|
import numpy |
|
|
|
import facefusion.choices |
|
import facefusion.jobs.job_manager |
|
import facefusion.jobs.job_store |
|
import facefusion.processors.core as processors |
|
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording |
|
from facefusion.common_helper import create_int_metavar |
|
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url |
|
from facefusion.execution import has_execution_provider |
|
from facefusion.face_analyser import get_many_faces, get_one_face |
|
from facefusion.face_helper import merge_matrix, paste_back, scale_face_landmark_5, warp_face_by_face_landmark_5 |
|
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask |
|
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces |
|
from facefusion.face_store import get_reference_faces |
|
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension |
|
from facefusion.processors import choices as processors_choices |
|
from facefusion.processors.types import AgeModifierDirection, AgeModifierInputs |
|
from facefusion.program_helper import find_argument_group |
|
from facefusion.thread_helper import thread_semaphore |
|
from facefusion.types import ApplyStateItem, Args, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame |
|
from facefusion.vision import match_frame_color, read_image, read_static_image, write_image |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: |
|
return\ |
|
{ |
|
'styleganex_age': |
|
{ |
|
'hashes': |
|
{ |
|
'age_modifier': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'styleganex_age.hash'), |
|
'path': resolve_relative_path('../.assets/models/styleganex_age.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'age_modifier': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'styleganex_age.onnx'), |
|
'path': resolve_relative_path('../.assets/models/styleganex_age.onnx') |
|
} |
|
}, |
|
'templates': |
|
{ |
|
'target': 'ffhq_512', |
|
'target_with_background': 'styleganex_384' |
|
}, |
|
'sizes': |
|
{ |
|
'target': (256, 256), |
|
'target_with_background': (384, 384) |
|
} |
|
} |
|
} |
|
|
|
|
|
def get_inference_pool() -> InferencePool: |
|
model_names = [ state_manager.get_item('age_modifier_model') ] |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return inference_manager.get_inference_pool(__name__, model_names, model_source_set) |
|
|
|
|
|
def clear_inference_pool() -> None: |
|
model_names = [ state_manager.get_item('age_modifier_model') ] |
|
inference_manager.clear_inference_pool(__name__, model_names) |
|
|
|
|
|
def get_model_options() -> ModelOptions: |
|
age_modifier_model = state_manager.get_item('age_modifier_model') |
|
return create_static_model_set('full').get(age_modifier_model) |
|
|
|
|
|
def register_args(program : ArgumentParser) -> None: |
|
group_processors = find_argument_group(program, 'processors') |
|
if group_processors: |
|
group_processors.add_argument('--age-modifier-model', help = wording.get('help.age_modifier_model'), default = config.get_str_value('processors', 'age_modifier_model', 'styleganex_age'), choices = processors_choices.age_modifier_models) |
|
group_processors.add_argument('--age-modifier-direction', help = wording.get('help.age_modifier_direction'), type = int, default = config.get_int_value('processors', 'age_modifier_direction', '0'), choices = processors_choices.age_modifier_direction_range, metavar = create_int_metavar(processors_choices.age_modifier_direction_range)) |
|
facefusion.jobs.job_store.register_step_keys([ 'age_modifier_model', 'age_modifier_direction' ]) |
|
|
|
|
|
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None: |
|
apply_state_item('age_modifier_model', args.get('age_modifier_model')) |
|
apply_state_item('age_modifier_direction', args.get('age_modifier_direction')) |
|
|
|
|
|
def pre_check() -> bool: |
|
model_hash_set = get_model_options().get('hashes') |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) |
|
|
|
|
|
def pre_process(mode : ProcessMode) -> bool: |
|
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')): |
|
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
if mode == 'output' and not in_directory(state_manager.get_item('output_path')): |
|
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
if mode == 'output' and not same_file_extension(state_manager.get_item('target_path'), state_manager.get_item('output_path')): |
|
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
return True |
|
|
|
|
|
def post_process() -> None: |
|
read_static_image.cache_clear() |
|
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]: |
|
clear_inference_pool() |
|
if state_manager.get_item('video_memory_strategy') == 'strict': |
|
content_analyser.clear_inference_pool() |
|
face_classifier.clear_inference_pool() |
|
face_detector.clear_inference_pool() |
|
face_landmarker.clear_inference_pool() |
|
face_masker.clear_inference_pool() |
|
face_recognizer.clear_inference_pool() |
|
|
|
|
|
def modify_age(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: |
|
model_templates = get_model_options().get('templates') |
|
model_sizes = get_model_options().get('sizes') |
|
face_landmark_5 = target_face.landmark_set.get('5/68').copy() |
|
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_templates.get('target'), model_sizes.get('target')) |
|
extend_face_landmark_5 = scale_face_landmark_5(face_landmark_5, 0.875) |
|
extend_vision_frame, extend_affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, extend_face_landmark_5, model_templates.get('target_with_background'), model_sizes.get('target_with_background')) |
|
extend_vision_frame_raw = extend_vision_frame.copy() |
|
box_mask = create_static_box_mask(model_sizes.get('target_with_background'), state_manager.get_item('face_mask_blur'), (0, 0, 0, 0)) |
|
crop_masks =\ |
|
[ |
|
box_mask |
|
] |
|
|
|
if 'occlusion' in state_manager.get_item('face_mask_types'): |
|
occlusion_mask = create_occlusion_mask(crop_vision_frame) |
|
combined_matrix = merge_matrix([ extend_affine_matrix, cv2.invertAffineTransform(affine_matrix) ]) |
|
occlusion_mask = cv2.warpAffine(occlusion_mask, combined_matrix, model_sizes.get('target_with_background')) |
|
crop_masks.append(occlusion_mask) |
|
|
|
crop_vision_frame = prepare_vision_frame(crop_vision_frame) |
|
extend_vision_frame = prepare_vision_frame(extend_vision_frame) |
|
age_modifier_direction = numpy.array(numpy.interp(state_manager.get_item('age_modifier_direction'), [ -100, 100 ], [ 2.5, -2.5 ])).astype(numpy.float32) |
|
extend_vision_frame = forward(crop_vision_frame, extend_vision_frame, age_modifier_direction) |
|
extend_vision_frame = normalize_extend_frame(extend_vision_frame) |
|
extend_vision_frame = match_frame_color(extend_vision_frame_raw, extend_vision_frame) |
|
extend_affine_matrix *= (model_sizes.get('target')[0] * 4) / model_sizes.get('target_with_background')[0] |
|
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1) |
|
crop_mask = cv2.resize(crop_mask, (model_sizes.get('target')[0] * 4, model_sizes.get('target')[1] * 4)) |
|
paste_vision_frame = paste_back(temp_vision_frame, extend_vision_frame, crop_mask, extend_affine_matrix) |
|
return paste_vision_frame |
|
|
|
|
|
def forward(crop_vision_frame : VisionFrame, extend_vision_frame : VisionFrame, age_modifier_direction : AgeModifierDirection) -> VisionFrame: |
|
age_modifier = get_inference_pool().get('age_modifier') |
|
age_modifier_inputs = {} |
|
|
|
if has_execution_provider('coreml'): |
|
age_modifier.set_providers([ facefusion.choices.execution_provider_set.get('cpu') ]) |
|
|
|
for age_modifier_input in age_modifier.get_inputs(): |
|
if age_modifier_input.name == 'target': |
|
age_modifier_inputs[age_modifier_input.name] = crop_vision_frame |
|
if age_modifier_input.name == 'target_with_background': |
|
age_modifier_inputs[age_modifier_input.name] = extend_vision_frame |
|
if age_modifier_input.name == 'direction': |
|
age_modifier_inputs[age_modifier_input.name] = age_modifier_direction |
|
|
|
with thread_semaphore(): |
|
crop_vision_frame = age_modifier.run(None, age_modifier_inputs)[0][0] |
|
|
|
return crop_vision_frame |
|
|
|
|
|
def prepare_vision_frame(vision_frame : VisionFrame) -> VisionFrame: |
|
vision_frame = vision_frame[:, :, ::-1] / 255.0 |
|
vision_frame = (vision_frame - 0.5) / 0.5 |
|
vision_frame = numpy.expand_dims(vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) |
|
return vision_frame |
|
|
|
|
|
def normalize_extend_frame(extend_vision_frame : VisionFrame) -> VisionFrame: |
|
model_sizes = get_model_options().get('sizes') |
|
extend_vision_frame = numpy.clip(extend_vision_frame, -1, 1) |
|
extend_vision_frame = (extend_vision_frame + 1) / 2 |
|
extend_vision_frame = extend_vision_frame.transpose(1, 2, 0).clip(0, 255) |
|
extend_vision_frame = (extend_vision_frame * 255.0) |
|
extend_vision_frame = extend_vision_frame.astype(numpy.uint8)[:, :, ::-1] |
|
extend_vision_frame = cv2.resize(extend_vision_frame, (model_sizes.get('target')[0] * 4, model_sizes.get('target')[1] * 4), interpolation = cv2.INTER_AREA) |
|
return extend_vision_frame |
|
|
|
|
|
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: |
|
return modify_age(target_face, temp_vision_frame) |
|
|
|
|
|
def process_frame(inputs : AgeModifierInputs) -> VisionFrame: |
|
reference_faces = inputs.get('reference_faces') |
|
target_vision_frame = inputs.get('target_vision_frame') |
|
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ])) |
|
|
|
if state_manager.get_item('face_selector_mode') == 'many': |
|
if many_faces: |
|
for target_face in many_faces: |
|
target_vision_frame = modify_age(target_face, target_vision_frame) |
|
if state_manager.get_item('face_selector_mode') == 'one': |
|
target_face = get_one_face(many_faces) |
|
if target_face: |
|
target_vision_frame = modify_age(target_face, target_vision_frame) |
|
if state_manager.get_item('face_selector_mode') == 'reference': |
|
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance')) |
|
if similar_faces: |
|
for similar_face in similar_faces: |
|
target_vision_frame = modify_age(similar_face, target_vision_frame) |
|
return target_vision_frame |
|
|
|
|
|
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: |
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None |
|
|
|
for queue_payload in process_manager.manage(queue_payloads): |
|
target_vision_path = queue_payload['frame_path'] |
|
target_vision_frame = read_image(target_vision_path) |
|
output_vision_frame = process_frame( |
|
{ |
|
'reference_faces': reference_faces, |
|
'target_vision_frame': target_vision_frame |
|
}) |
|
write_image(target_vision_path, output_vision_frame) |
|
update_progress(1) |
|
|
|
|
|
def process_image(source_path : str, target_path : str, output_path : str) -> None: |
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None |
|
target_vision_frame = read_static_image(target_path) |
|
output_vision_frame = process_frame( |
|
{ |
|
'reference_faces': reference_faces, |
|
'target_vision_frame': target_vision_frame |
|
}) |
|
write_image(output_path, output_vision_frame) |
|
|
|
|
|
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: |
|
processors.multi_process_frames(None, temp_frame_paths, process_frames) |
|
|