|
from argparse import ArgumentParser |
|
from functools import lru_cache |
|
from typing import List |
|
|
|
import cv2 |
|
import numpy |
|
|
|
import facefusion.jobs.job_manager |
|
import facefusion.jobs.job_store |
|
import facefusion.processors.core as processors |
|
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording |
|
from facefusion.common_helper import create_float_metavar, create_int_metavar |
|
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url |
|
from facefusion.face_analyser import get_many_faces, get_one_face |
|
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5 |
|
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask |
|
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces |
|
from facefusion.face_store import get_reference_faces |
|
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension |
|
from facefusion.processors import choices as processors_choices |
|
from facefusion.processors.types import FaceEnhancerInputs, FaceEnhancerWeight |
|
from facefusion.program_helper import find_argument_group |
|
from facefusion.thread_helper import thread_semaphore |
|
from facefusion.types import ApplyStateItem, Args, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame |
|
from facefusion.vision import read_image, read_static_image, write_image |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: |
|
return\ |
|
{ |
|
'codeformer': |
|
{ |
|
'hashes': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'codeformer.hash'), |
|
'path': resolve_relative_path('../.assets/models/codeformer.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'codeformer.onnx'), |
|
'path': resolve_relative_path('../.assets/models/codeformer.onnx') |
|
} |
|
}, |
|
'template': 'ffhq_512', |
|
'size': (512, 512) |
|
}, |
|
'gfpgan_1.2': |
|
{ |
|
'hashes': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.2.hash'), |
|
'path': resolve_relative_path('../.assets/models/gfpgan_1.2.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.2.onnx'), |
|
'path': resolve_relative_path('../.assets/models/gfpgan_1.2.onnx') |
|
} |
|
}, |
|
'template': 'ffhq_512', |
|
'size': (512, 512) |
|
}, |
|
'gfpgan_1.3': |
|
{ |
|
'hashes': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.3.hash'), |
|
'path': resolve_relative_path('../.assets/models/gfpgan_1.3.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.3.onnx'), |
|
'path': resolve_relative_path('../.assets/models/gfpgan_1.3.onnx') |
|
} |
|
}, |
|
'template': 'ffhq_512', |
|
'size': (512, 512) |
|
}, |
|
'gfpgan_1.4': |
|
{ |
|
'hashes': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.4.hash'), |
|
'path': resolve_relative_path('../.assets/models/gfpgan_1.4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gfpgan_1.4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/gfpgan_1.4.onnx') |
|
} |
|
}, |
|
'template': 'ffhq_512', |
|
'size': (512, 512) |
|
}, |
|
'gpen_bfr_256': |
|
{ |
|
'hashes': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_256.hash'), |
|
'path': resolve_relative_path('../.assets/models/gpen_bfr_256.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_256.onnx'), |
|
'path': resolve_relative_path('../.assets/models/gpen_bfr_256.onnx') |
|
} |
|
}, |
|
'template': 'arcface_128_v2', |
|
'size': (256, 256) |
|
}, |
|
'gpen_bfr_512': |
|
{ |
|
'hashes': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_512.hash'), |
|
'path': resolve_relative_path('../.assets/models/gpen_bfr_512.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_512.onnx'), |
|
'path': resolve_relative_path('../.assets/models/gpen_bfr_512.onnx') |
|
} |
|
}, |
|
'template': 'ffhq_512', |
|
'size': (512, 512) |
|
}, |
|
'gpen_bfr_1024': |
|
{ |
|
'hashes': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_1024.hash'), |
|
'path': resolve_relative_path('../.assets/models/gpen_bfr_1024.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_1024.onnx'), |
|
'path': resolve_relative_path('../.assets/models/gpen_bfr_1024.onnx') |
|
} |
|
}, |
|
'template': 'ffhq_512', |
|
'size': (1024, 1024) |
|
}, |
|
'gpen_bfr_2048': |
|
{ |
|
'hashes': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_2048.hash'), |
|
'path': resolve_relative_path('../.assets/models/gpen_bfr_2048.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'gpen_bfr_2048.onnx'), |
|
'path': resolve_relative_path('../.assets/models/gpen_bfr_2048.onnx') |
|
} |
|
}, |
|
'template': 'ffhq_512', |
|
'size': (2048, 2048) |
|
}, |
|
'restoreformer_plus_plus': |
|
{ |
|
'hashes': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'restoreformer_plus_plus.hash'), |
|
'path': resolve_relative_path('../.assets/models/restoreformer_plus_plus.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'restoreformer_plus_plus.onnx'), |
|
'path': resolve_relative_path('../.assets/models/restoreformer_plus_plus.onnx') |
|
} |
|
}, |
|
'template': 'ffhq_512', |
|
'size': (512, 512) |
|
} |
|
} |
|
|
|
|
|
def get_inference_pool() -> InferencePool: |
|
model_names = [ state_manager.get_item('face_enhancer_model') ] |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return inference_manager.get_inference_pool(__name__, model_names, model_source_set) |
|
|
|
|
|
def clear_inference_pool() -> None: |
|
model_names = [ state_manager.get_item('face_enhancer_model') ] |
|
inference_manager.clear_inference_pool(__name__, model_names) |
|
|
|
|
|
def get_model_options() -> ModelOptions: |
|
face_enhancer_model = state_manager.get_item('face_enhancer_model') |
|
return create_static_model_set('full').get(face_enhancer_model) |
|
|
|
|
|
def register_args(program : ArgumentParser) -> None: |
|
group_processors = find_argument_group(program, 'processors') |
|
if group_processors: |
|
group_processors.add_argument('--face-enhancer-model', help = wording.get('help.face_enhancer_model'), default = config.get_str_value('processors', 'face_enhancer_model', 'gfpgan_1.4'), choices = processors_choices.face_enhancer_models) |
|
group_processors.add_argument('--face-enhancer-blend', help = wording.get('help.face_enhancer_blend'), type = int, default = config.get_int_value('processors', 'face_enhancer_blend', '80'), choices = processors_choices.face_enhancer_blend_range, metavar = create_int_metavar(processors_choices.face_enhancer_blend_range)) |
|
group_processors.add_argument('--face-enhancer-weight', help = wording.get('help.face_enhancer_weight'), type = float, default = config.get_float_value('processors', 'face_enhancer_weight', '1.0'), choices = processors_choices.face_enhancer_weight_range, metavar = create_float_metavar(processors_choices.face_enhancer_weight_range)) |
|
facefusion.jobs.job_store.register_step_keys([ 'face_enhancer_model', 'face_enhancer_blend', 'face_enhancer_weight' ]) |
|
|
|
|
|
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None: |
|
apply_state_item('face_enhancer_model', args.get('face_enhancer_model')) |
|
apply_state_item('face_enhancer_blend', args.get('face_enhancer_blend')) |
|
apply_state_item('face_enhancer_weight', args.get('face_enhancer_weight')) |
|
|
|
|
|
def pre_check() -> bool: |
|
model_hash_set = get_model_options().get('hashes') |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) |
|
|
|
|
|
def pre_process(mode : ProcessMode) -> bool: |
|
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')): |
|
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
if mode == 'output' and not in_directory(state_manager.get_item('output_path')): |
|
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
if mode == 'output' and not same_file_extension(state_manager.get_item('target_path'), state_manager.get_item('output_path')): |
|
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
return True |
|
|
|
|
|
def post_process() -> None: |
|
read_static_image.cache_clear() |
|
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]: |
|
clear_inference_pool() |
|
if state_manager.get_item('video_memory_strategy') == 'strict': |
|
content_analyser.clear_inference_pool() |
|
face_classifier.clear_inference_pool() |
|
face_detector.clear_inference_pool() |
|
face_landmarker.clear_inference_pool() |
|
face_masker.clear_inference_pool() |
|
face_recognizer.clear_inference_pool() |
|
|
|
|
|
def enhance_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: |
|
model_template = get_model_options().get('template') |
|
model_size = get_model_options().get('size') |
|
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size) |
|
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), (0, 0, 0, 0)) |
|
crop_masks =\ |
|
[ |
|
box_mask |
|
] |
|
|
|
if 'occlusion' in state_manager.get_item('face_mask_types'): |
|
occlusion_mask = create_occlusion_mask(crop_vision_frame) |
|
crop_masks.append(occlusion_mask) |
|
|
|
crop_vision_frame = prepare_crop_frame(crop_vision_frame) |
|
face_enhancer_weight = numpy.array([ state_manager.get_item('face_enhancer_weight') ]).astype(numpy.double) |
|
crop_vision_frame = forward(crop_vision_frame, face_enhancer_weight) |
|
crop_vision_frame = normalize_crop_frame(crop_vision_frame) |
|
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1) |
|
paste_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix) |
|
temp_vision_frame = blend_frame(temp_vision_frame, paste_vision_frame) |
|
return temp_vision_frame |
|
|
|
|
|
def forward(crop_vision_frame : VisionFrame, face_enhancer_weight : FaceEnhancerWeight) -> VisionFrame: |
|
face_enhancer = get_inference_pool().get('face_enhancer') |
|
face_enhancer_inputs = {} |
|
|
|
for face_enhancer_input in face_enhancer.get_inputs(): |
|
if face_enhancer_input.name == 'input': |
|
face_enhancer_inputs[face_enhancer_input.name] = crop_vision_frame |
|
if face_enhancer_input.name == 'weight': |
|
face_enhancer_inputs[face_enhancer_input.name] = face_enhancer_weight |
|
|
|
with thread_semaphore(): |
|
crop_vision_frame = face_enhancer.run(None, face_enhancer_inputs)[0][0] |
|
|
|
return crop_vision_frame |
|
|
|
|
|
def has_weight_input() -> bool: |
|
face_enhancer = get_inference_pool().get('face_enhancer') |
|
|
|
for deep_swapper_input in face_enhancer.get_inputs(): |
|
if deep_swapper_input.name == 'weight': |
|
return True |
|
|
|
return False |
|
|
|
|
|
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: |
|
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0 |
|
crop_vision_frame = (crop_vision_frame - 0.5) / 0.5 |
|
crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) |
|
return crop_vision_frame |
|
|
|
|
|
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: |
|
crop_vision_frame = numpy.clip(crop_vision_frame, -1, 1) |
|
crop_vision_frame = (crop_vision_frame + 1) / 2 |
|
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0) |
|
crop_vision_frame = (crop_vision_frame * 255.0).round() |
|
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1] |
|
return crop_vision_frame |
|
|
|
|
|
def blend_frame(temp_vision_frame : VisionFrame, paste_vision_frame : VisionFrame) -> VisionFrame: |
|
face_enhancer_blend = 1 - (state_manager.get_item('face_enhancer_blend') / 100) |
|
temp_vision_frame = cv2.addWeighted(temp_vision_frame, face_enhancer_blend, paste_vision_frame, 1 - face_enhancer_blend, 0) |
|
return temp_vision_frame |
|
|
|
|
|
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: |
|
return enhance_face(target_face, temp_vision_frame) |
|
|
|
|
|
def process_frame(inputs : FaceEnhancerInputs) -> VisionFrame: |
|
reference_faces = inputs.get('reference_faces') |
|
target_vision_frame = inputs.get('target_vision_frame') |
|
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ])) |
|
|
|
if state_manager.get_item('face_selector_mode') == 'many': |
|
if many_faces: |
|
for target_face in many_faces: |
|
target_vision_frame = enhance_face(target_face, target_vision_frame) |
|
if state_manager.get_item('face_selector_mode') == 'one': |
|
target_face = get_one_face(many_faces) |
|
if target_face: |
|
target_vision_frame = enhance_face(target_face, target_vision_frame) |
|
if state_manager.get_item('face_selector_mode') == 'reference': |
|
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance')) |
|
if similar_faces: |
|
for similar_face in similar_faces: |
|
target_vision_frame = enhance_face(similar_face, target_vision_frame) |
|
return target_vision_frame |
|
|
|
|
|
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: |
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None |
|
|
|
for queue_payload in process_manager.manage(queue_payloads): |
|
target_vision_path = queue_payload['frame_path'] |
|
target_vision_frame = read_image(target_vision_path) |
|
output_vision_frame = process_frame( |
|
{ |
|
'reference_faces': reference_faces, |
|
'target_vision_frame': target_vision_frame |
|
}) |
|
write_image(target_vision_path, output_vision_frame) |
|
update_progress(1) |
|
|
|
|
|
def process_image(source_path : str, target_path : str, output_path : str) -> None: |
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None |
|
target_vision_frame = read_static_image(target_path) |
|
output_vision_frame = process_frame( |
|
{ |
|
'reference_faces': reference_faces, |
|
'target_vision_frame': target_vision_frame |
|
}) |
|
write_image(output_path, output_vision_frame) |
|
|
|
|
|
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: |
|
processors.multi_process_frames(None, temp_frame_paths, process_frames) |
|
|