|
from argparse import ArgumentParser |
|
from functools import lru_cache |
|
from typing import List, Tuple |
|
|
|
import numpy |
|
|
|
import facefusion.choices |
|
import facefusion.jobs.job_manager |
|
import facefusion.jobs.job_store |
|
import facefusion.processors.core as processors |
|
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording |
|
from facefusion.common_helper import get_first |
|
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url |
|
from facefusion.execution import has_execution_provider |
|
from facefusion.face_analyser import get_average_face, get_many_faces, get_one_face |
|
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5 |
|
from facefusion.face_masker import create_occlusion_mask, create_region_mask, create_static_box_mask |
|
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces, sort_faces_by_order |
|
from facefusion.face_store import get_reference_faces |
|
from facefusion.filesystem import filter_image_paths, has_image, in_directory, is_image, is_video, resolve_relative_path, same_file_extension |
|
from facefusion.model_helper import get_static_model_initializer |
|
from facefusion.processors import choices as processors_choices |
|
from facefusion.processors.pixel_boost import explode_pixel_boost, implode_pixel_boost |
|
from facefusion.processors.types import FaceSwapperInputs |
|
from facefusion.program_helper import find_argument_group |
|
from facefusion.thread_helper import conditional_thread_semaphore |
|
from facefusion.types import ApplyStateItem, Args, DownloadScope, Embedding, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame |
|
from facefusion.vision import read_image, read_static_image, read_static_images, unpack_resolution, write_image |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: |
|
return\ |
|
{ |
|
'blendswap_256': |
|
{ |
|
'hashes': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'blendswap_256.hash'), |
|
'path': resolve_relative_path('../.assets/models/blendswap_256.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'blendswap_256.onnx'), |
|
'path': resolve_relative_path('../.assets/models/blendswap_256.onnx') |
|
} |
|
}, |
|
'type': 'blendswap', |
|
'template': 'ffhq_512', |
|
'size': (256, 256), |
|
'mean': [ 0.0, 0.0, 0.0 ], |
|
'standard_deviation': [ 1.0, 1.0, 1.0 ] |
|
}, |
|
'ghost_1_256': |
|
{ |
|
'hashes': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'ghost_1_256.hash'), |
|
'path': resolve_relative_path('../.assets/models/ghost_1_256.hash') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.hash'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'ghost_1_256.onnx'), |
|
'path': resolve_relative_path('../.assets/models/ghost_1_256.onnx') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.onnx'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.onnx') |
|
} |
|
}, |
|
'type': 'ghost', |
|
'template': 'arcface_112_v1', |
|
'size': (256, 256), |
|
'mean': [ 0.5, 0.5, 0.5 ], |
|
'standard_deviation': [ 0.5, 0.5, 0.5 ] |
|
}, |
|
'ghost_2_256': |
|
{ |
|
'hashes': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'ghost_2_256.hash'), |
|
'path': resolve_relative_path('../.assets/models/ghost_2_256.hash') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.hash'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'ghost_2_256.onnx'), |
|
'path': resolve_relative_path('../.assets/models/ghost_2_256.onnx') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.onnx'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.onnx') |
|
} |
|
}, |
|
'type': 'ghost', |
|
'template': 'arcface_112_v1', |
|
'size': (256, 256), |
|
'mean': [ 0.5, 0.5, 0.5 ], |
|
'standard_deviation': [ 0.5, 0.5, 0.5 ] |
|
}, |
|
'ghost_3_256': |
|
{ |
|
'hashes': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'ghost_3_256.hash'), |
|
'path': resolve_relative_path('../.assets/models/ghost_3_256.hash') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.hash'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'ghost_3_256.onnx'), |
|
'path': resolve_relative_path('../.assets/models/ghost_3_256.onnx') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_converter_ghost.onnx'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_ghost.onnx') |
|
} |
|
}, |
|
'type': 'ghost', |
|
'template': 'arcface_112_v1', |
|
'size': (256, 256), |
|
'mean': [ 0.5, 0.5, 0.5 ], |
|
'standard_deviation': [ 0.5, 0.5, 0.5 ] |
|
}, |
|
'hififace_unofficial_256': |
|
{ |
|
'hashes': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'hififace_unofficial_256.hash'), |
|
'path': resolve_relative_path('../.assets/models/hififace_unofficial_256.hash') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'arcface_converter_hififace.hash'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_hififace.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'hififace_unofficial_256.onnx'), |
|
'path': resolve_relative_path('../.assets/models/hififace_unofficial_256.onnx') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'arcface_converter_hififace.onnx'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_hififace.onnx') |
|
} |
|
}, |
|
'type': 'hififace', |
|
'template': 'mtcnn_512', |
|
'size': (256, 256), |
|
'mean': [ 0.5, 0.5, 0.5 ], |
|
'standard_deviation': [ 0.5, 0.5, 0.5 ] |
|
}, |
|
'inswapper_128': |
|
{ |
|
'hashes': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'inswapper_128.hash'), |
|
'path': resolve_relative_path('../.assets/models/inswapper_128.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'inswapper_128.onnx'), |
|
'path': resolve_relative_path('../.assets/models/inswapper_128.onnx') |
|
} |
|
}, |
|
'type': 'inswapper', |
|
'template': 'arcface_128_v2', |
|
'size': (128, 128), |
|
'mean': [ 0.0, 0.0, 0.0 ], |
|
'standard_deviation': [ 1.0, 1.0, 1.0 ] |
|
}, |
|
'inswapper_128_fp16': |
|
{ |
|
'hashes': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'inswapper_128_fp16.hash'), |
|
'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'inswapper_128_fp16.onnx'), |
|
'path': resolve_relative_path('../.assets/models/inswapper_128_fp16.onnx') |
|
} |
|
}, |
|
'type': 'inswapper', |
|
'template': 'arcface_128_v2', |
|
'size': (128, 128), |
|
'mean': [ 0.0, 0.0, 0.0 ], |
|
'standard_deviation': [ 1.0, 1.0, 1.0 ] |
|
}, |
|
'simswap_256': |
|
{ |
|
'hashes': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'simswap_256.hash'), |
|
'path': resolve_relative_path('../.assets/models/simswap_256.hash') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_converter_simswap.hash'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_simswap.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'simswap_256.onnx'), |
|
'path': resolve_relative_path('../.assets/models/simswap_256.onnx') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_converter_simswap.onnx'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_simswap.onnx') |
|
} |
|
}, |
|
'type': 'simswap', |
|
'template': 'arcface_112_v1', |
|
'size': (256, 256), |
|
'mean': [ 0.485, 0.456, 0.406 ], |
|
'standard_deviation': [ 0.229, 0.224, 0.225 ] |
|
}, |
|
'simswap_unofficial_512': |
|
{ |
|
'hashes': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'simswap_unofficial_512.hash'), |
|
'path': resolve_relative_path('../.assets/models/simswap_unofficial_512.hash') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_converter_simswap.hash'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_simswap.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'simswap_unofficial_512.onnx'), |
|
'path': resolve_relative_path('../.assets/models/simswap_unofficial_512.onnx') |
|
}, |
|
'embedding_converter': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'arcface_converter_simswap.onnx'), |
|
'path': resolve_relative_path('../.assets/models/arcface_converter_simswap.onnx') |
|
} |
|
}, |
|
'type': 'simswap', |
|
'template': 'arcface_112_v1', |
|
'size': (512, 512), |
|
'mean': [ 0.0, 0.0, 0.0 ], |
|
'standard_deviation': [ 1.0, 1.0, 1.0 ] |
|
}, |
|
'uniface_256': |
|
{ |
|
'hashes': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'uniface_256.hash'), |
|
'path': resolve_relative_path('../.assets/models/uniface_256.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'face_swapper': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'uniface_256.onnx'), |
|
'path': resolve_relative_path('../.assets/models/uniface_256.onnx') |
|
} |
|
}, |
|
'type': 'uniface', |
|
'template': 'ffhq_512', |
|
'size': (256, 256), |
|
'mean': [ 0.5, 0.5, 0.5 ], |
|
'standard_deviation': [ 0.5, 0.5, 0.5 ] |
|
} |
|
} |
|
|
|
|
|
def get_inference_pool() -> InferencePool: |
|
model_names = [ get_face_swapper_model() ] |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return inference_manager.get_inference_pool(__name__, model_names, model_source_set) |
|
|
|
|
|
def clear_inference_pool() -> None: |
|
model_names = [ get_face_swapper_model() ] |
|
inference_manager.clear_inference_pool(__name__, model_names) |
|
|
|
|
|
def get_model_options() -> ModelOptions: |
|
face_swapper_model = get_face_swapper_model() |
|
return create_static_model_set('full').get(face_swapper_model) |
|
|
|
|
|
def get_face_swapper_model() -> str: |
|
face_swapper_model = state_manager.get_item('face_swapper_model') |
|
|
|
if has_execution_provider('coreml') and face_swapper_model == 'inswapper_128_fp16': |
|
return 'inswapper_128' |
|
return face_swapper_model |
|
|
|
|
|
def register_args(program : ArgumentParser) -> None: |
|
group_processors = find_argument_group(program, 'processors') |
|
if group_processors: |
|
group_processors.add_argument('--face-swapper-model', help = wording.get('help.face_swapper_model'), default = config.get_str_value('processors', 'face_swapper_model', 'inswapper_128_fp16'), choices = processors_choices.face_swapper_models) |
|
known_args, _ = program.parse_known_args() |
|
face_swapper_pixel_boost_choices = processors_choices.face_swapper_set.get(known_args.face_swapper_model) |
|
group_processors.add_argument('--face-swapper-pixel-boost', help = wording.get('help.face_swapper_pixel_boost'), default = config.get_str_value('processors', 'face_swapper_pixel_boost', get_first(face_swapper_pixel_boost_choices)), choices = face_swapper_pixel_boost_choices) |
|
facefusion.jobs.job_store.register_step_keys([ 'face_swapper_model', 'face_swapper_pixel_boost' ]) |
|
|
|
|
|
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None: |
|
apply_state_item('face_swapper_model', args.get('face_swapper_model')) |
|
apply_state_item('face_swapper_pixel_boost', args.get('face_swapper_pixel_boost')) |
|
|
|
|
|
def pre_check() -> bool: |
|
model_hash_set = get_model_options().get('hashes') |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) |
|
|
|
|
|
def pre_process(mode : ProcessMode) -> bool: |
|
if not has_image(state_manager.get_item('source_paths')): |
|
logger.error(wording.get('choose_image_source') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
source_image_paths = filter_image_paths(state_manager.get_item('source_paths')) |
|
source_frames = read_static_images(source_image_paths) |
|
source_faces = get_many_faces(source_frames) |
|
if not get_one_face(source_faces): |
|
logger.error(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')): |
|
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
if mode == 'output' and not in_directory(state_manager.get_item('output_path')): |
|
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
if mode == 'output' and not same_file_extension(state_manager.get_item('target_path'), state_manager.get_item('output_path')): |
|
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
return True |
|
|
|
|
|
def post_process() -> None: |
|
read_static_image.cache_clear() |
|
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]: |
|
clear_inference_pool() |
|
get_static_model_initializer.cache_clear() |
|
if state_manager.get_item('video_memory_strategy') == 'strict': |
|
content_analyser.clear_inference_pool() |
|
face_classifier.clear_inference_pool() |
|
face_detector.clear_inference_pool() |
|
face_landmarker.clear_inference_pool() |
|
face_masker.clear_inference_pool() |
|
face_recognizer.clear_inference_pool() |
|
|
|
|
|
def swap_face(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: |
|
model_template = get_model_options().get('template') |
|
model_size = get_model_options().get('size') |
|
pixel_boost_size = unpack_resolution(state_manager.get_item('face_swapper_pixel_boost')) |
|
pixel_boost_total = pixel_boost_size[0] // model_size[0] |
|
crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, pixel_boost_size) |
|
temp_vision_frames = [] |
|
crop_masks = [] |
|
|
|
if 'box' in state_manager.get_item('face_mask_types'): |
|
box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), state_manager.get_item('face_mask_padding')) |
|
crop_masks.append(box_mask) |
|
|
|
if 'occlusion' in state_manager.get_item('face_mask_types'): |
|
occlusion_mask = create_occlusion_mask(crop_vision_frame) |
|
crop_masks.append(occlusion_mask) |
|
|
|
pixel_boost_vision_frames = implode_pixel_boost(crop_vision_frame, pixel_boost_total, model_size) |
|
for pixel_boost_vision_frame in pixel_boost_vision_frames: |
|
pixel_boost_vision_frame = prepare_crop_frame(pixel_boost_vision_frame) |
|
pixel_boost_vision_frame = forward_swap_face(source_face, pixel_boost_vision_frame) |
|
pixel_boost_vision_frame = normalize_crop_frame(pixel_boost_vision_frame) |
|
temp_vision_frames.append(pixel_boost_vision_frame) |
|
crop_vision_frame = explode_pixel_boost(temp_vision_frames, pixel_boost_total, model_size, pixel_boost_size) |
|
|
|
if 'region' in state_manager.get_item('face_mask_types'): |
|
region_mask = create_region_mask(crop_vision_frame, state_manager.get_item('face_mask_regions')) |
|
crop_masks.append(region_mask) |
|
|
|
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1) |
|
temp_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, crop_mask, affine_matrix) |
|
return temp_vision_frame |
|
|
|
|
|
def forward_swap_face(source_face : Face, crop_vision_frame : VisionFrame) -> VisionFrame: |
|
face_swapper = get_inference_pool().get('face_swapper') |
|
model_type = get_model_options().get('type') |
|
face_swapper_inputs = {} |
|
|
|
if has_execution_provider('coreml') and model_type in [ 'ghost', 'uniface' ]: |
|
face_swapper.set_providers([ facefusion.choices.execution_provider_set.get('cpu') ]) |
|
|
|
for face_swapper_input in face_swapper.get_inputs(): |
|
if face_swapper_input.name == 'source': |
|
if model_type in [ 'blendswap', 'uniface' ]: |
|
face_swapper_inputs[face_swapper_input.name] = prepare_source_frame(source_face) |
|
else: |
|
face_swapper_inputs[face_swapper_input.name] = prepare_source_embedding(source_face) |
|
if face_swapper_input.name == 'target': |
|
face_swapper_inputs[face_swapper_input.name] = crop_vision_frame |
|
|
|
with conditional_thread_semaphore(): |
|
crop_vision_frame = face_swapper.run(None, face_swapper_inputs)[0][0] |
|
|
|
return crop_vision_frame |
|
|
|
|
|
def forward_convert_embedding(embedding : Embedding) -> Embedding: |
|
embedding_converter = get_inference_pool().get('embedding_converter') |
|
|
|
with conditional_thread_semaphore(): |
|
embedding = embedding_converter.run(None, |
|
{ |
|
'input': embedding |
|
})[0] |
|
|
|
return embedding |
|
|
|
|
|
def prepare_source_frame(source_face : Face) -> VisionFrame: |
|
model_type = get_model_options().get('type') |
|
source_vision_frame = read_static_image(get_first(state_manager.get_item('source_paths'))) |
|
|
|
if model_type == 'blendswap': |
|
source_vision_frame, _ = warp_face_by_face_landmark_5(source_vision_frame, source_face.landmark_set.get('5/68'), 'arcface_112_v2', (112, 112)) |
|
if model_type == 'uniface': |
|
source_vision_frame, _ = warp_face_by_face_landmark_5(source_vision_frame, source_face.landmark_set.get('5/68'), 'ffhq_512', (256, 256)) |
|
source_vision_frame = source_vision_frame[:, :, ::-1] / 255.0 |
|
source_vision_frame = source_vision_frame.transpose(2, 0, 1) |
|
source_vision_frame = numpy.expand_dims(source_vision_frame, axis = 0).astype(numpy.float32) |
|
return source_vision_frame |
|
|
|
|
|
def prepare_source_embedding(source_face : Face) -> Embedding: |
|
model_type = get_model_options().get('type') |
|
|
|
if model_type == 'ghost': |
|
source_embedding, _ = convert_embedding(source_face) |
|
source_embedding = source_embedding.reshape(1, -1) |
|
elif model_type == 'inswapper': |
|
model_path = get_model_options().get('sources').get('face_swapper').get('path') |
|
model_initializer = get_static_model_initializer(model_path) |
|
source_embedding = source_face.embedding.reshape((1, -1)) |
|
source_embedding = numpy.dot(source_embedding, model_initializer) / numpy.linalg.norm(source_embedding) |
|
else: |
|
_, source_normed_embedding = convert_embedding(source_face) |
|
source_embedding = source_normed_embedding.reshape(1, -1) |
|
return source_embedding |
|
|
|
|
|
def convert_embedding(source_face : Face) -> Tuple[Embedding, Embedding]: |
|
embedding = source_face.embedding.reshape(-1, 512) |
|
embedding = forward_convert_embedding(embedding) |
|
embedding = embedding.ravel() |
|
normed_embedding = embedding / numpy.linalg.norm(embedding) |
|
return embedding, normed_embedding |
|
|
|
|
|
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: |
|
model_mean = get_model_options().get('mean') |
|
model_standard_deviation = get_model_options().get('standard_deviation') |
|
|
|
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0 |
|
crop_vision_frame = (crop_vision_frame - model_mean) / model_standard_deviation |
|
crop_vision_frame = crop_vision_frame.transpose(2, 0, 1) |
|
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0).astype(numpy.float32) |
|
return crop_vision_frame |
|
|
|
|
|
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: |
|
model_type = get_model_options().get('type') |
|
model_mean = get_model_options().get('mean') |
|
model_standard_deviation = get_model_options().get('standard_deviation') |
|
|
|
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0) |
|
if model_type in [ 'ghost', 'hififace', 'uniface' ]: |
|
crop_vision_frame = crop_vision_frame * model_standard_deviation + model_mean |
|
crop_vision_frame = crop_vision_frame.clip(0, 1) |
|
crop_vision_frame = crop_vision_frame[:, :, ::-1] * 255 |
|
return crop_vision_frame |
|
|
|
|
|
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: |
|
return swap_face(source_face, target_face, temp_vision_frame) |
|
|
|
|
|
def process_frame(inputs : FaceSwapperInputs) -> VisionFrame: |
|
reference_faces = inputs.get('reference_faces') |
|
source_face = inputs.get('source_face') |
|
target_vision_frame = inputs.get('target_vision_frame') |
|
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ])) |
|
|
|
if state_manager.get_item('face_selector_mode') == 'many': |
|
if many_faces: |
|
for target_face in many_faces: |
|
target_vision_frame = swap_face(source_face, target_face, target_vision_frame) |
|
if state_manager.get_item('face_selector_mode') == 'one': |
|
target_face = get_one_face(many_faces) |
|
if target_face: |
|
target_vision_frame = swap_face(source_face, target_face, target_vision_frame) |
|
if state_manager.get_item('face_selector_mode') == 'reference': |
|
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance')) |
|
if similar_faces: |
|
for similar_face in similar_faces: |
|
target_vision_frame = swap_face(source_face, similar_face, target_vision_frame) |
|
return target_vision_frame |
|
|
|
|
|
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: |
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None |
|
source_frames = read_static_images(source_paths) |
|
source_faces = [] |
|
|
|
for source_frame in source_frames: |
|
temp_faces = get_many_faces([ source_frame ]) |
|
temp_faces = sort_faces_by_order(temp_faces, 'large-small') |
|
if temp_faces: |
|
source_faces.append(get_first(temp_faces)) |
|
source_face = get_average_face(source_faces) |
|
|
|
for queue_payload in process_manager.manage(queue_payloads): |
|
target_vision_path = queue_payload['frame_path'] |
|
target_vision_frame = read_image(target_vision_path) |
|
output_vision_frame = process_frame( |
|
{ |
|
'reference_faces': reference_faces, |
|
'source_face': source_face, |
|
'target_vision_frame': target_vision_frame |
|
}) |
|
write_image(target_vision_path, output_vision_frame) |
|
update_progress(1) |
|
|
|
|
|
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None: |
|
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None |
|
source_frames = read_static_images(source_paths) |
|
source_faces = [] |
|
|
|
for source_frame in source_frames: |
|
temp_faces = get_many_faces([ source_frame ]) |
|
temp_faces = sort_faces_by_order(temp_faces, 'large-small') |
|
if temp_faces: |
|
source_faces.append(get_first(temp_faces)) |
|
source_face = get_average_face(source_faces) |
|
target_vision_frame = read_static_image(target_path) |
|
output_vision_frame = process_frame( |
|
{ |
|
'reference_faces': reference_faces, |
|
'source_face': source_face, |
|
'target_vision_frame': target_vision_frame |
|
}) |
|
write_image(output_path, output_vision_frame) |
|
|
|
|
|
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: |
|
processors.multi_process_frames(source_paths, temp_frame_paths, process_frames) |
|
|