|
from argparse import ArgumentParser |
|
from functools import lru_cache |
|
from typing import List |
|
|
|
import cv2 |
|
import numpy |
|
|
|
import facefusion.jobs.job_manager |
|
import facefusion.jobs.job_store |
|
import facefusion.processors.core as processors |
|
from facefusion import config, content_analyser, inference_manager, logger, process_manager, state_manager, wording |
|
from facefusion.common_helper import create_int_metavar |
|
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url |
|
from facefusion.execution import has_execution_provider |
|
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension |
|
from facefusion.processors import choices as processors_choices |
|
from facefusion.processors.types import FrameEnhancerInputs |
|
from facefusion.program_helper import find_argument_group |
|
from facefusion.thread_helper import conditional_thread_semaphore |
|
from facefusion.types import ApplyStateItem, Args, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame |
|
from facefusion.vision import create_tile_frames, merge_tile_frames, read_image, read_static_image, write_image |
|
|
|
|
|
@lru_cache(maxsize = None) |
|
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: |
|
return\ |
|
{ |
|
'clear_reality_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'clear_reality_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/clear_reality_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'clear_reality_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/clear_reality_x4.onnx') |
|
} |
|
}, |
|
'size': (128, 8, 4), |
|
'scale': 4 |
|
}, |
|
'lsdir_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'lsdir_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/lsdir_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'lsdir_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/lsdir_x4.onnx') |
|
} |
|
}, |
|
'size': (128, 8, 4), |
|
'scale': 4 |
|
}, |
|
'nomos8k_sc_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'nomos8k_sc_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/nomos8k_sc_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'nomos8k_sc_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/nomos8k_sc_x4.onnx') |
|
} |
|
}, |
|
'size': (128, 8, 4), |
|
'scale': 4 |
|
}, |
|
'real_esrgan_x2': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2.hash'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x2.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2.onnx'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x2.onnx') |
|
} |
|
}, |
|
'size': (256, 16, 8), |
|
'scale': 2 |
|
}, |
|
'real_esrgan_x2_fp16': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2_fp16.hash'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x2_fp16.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2_fp16.onnx'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x2_fp16.onnx') |
|
} |
|
}, |
|
'size': (256, 16, 8), |
|
'scale': 2 |
|
}, |
|
'real_esrgan_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x4.onnx') |
|
} |
|
}, |
|
'size': (256, 16, 8), |
|
'scale': 4 |
|
}, |
|
'real_esrgan_x4_fp16': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4_fp16.hash'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x4_fp16.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4_fp16.onnx'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x4_fp16.onnx') |
|
} |
|
}, |
|
'size': (256, 16, 8), |
|
'scale': 4 |
|
}, |
|
'real_esrgan_x8': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8.hash'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x8.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8.onnx'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x8.onnx') |
|
} |
|
}, |
|
'size': (256, 16, 8), |
|
'scale': 8 |
|
}, |
|
'real_esrgan_x8_fp16': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8_fp16.hash'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x8_fp16.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8_fp16.onnx'), |
|
'path': resolve_relative_path('../.assets/models/real_esrgan_x8_fp16.onnx') |
|
} |
|
}, |
|
'size': (256, 16, 8), |
|
'scale': 8 |
|
}, |
|
'real_hatgan_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_hatgan_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/real_hatgan_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'real_hatgan_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/real_hatgan_x4.onnx') |
|
} |
|
}, |
|
'size': (256, 16, 8), |
|
'scale': 4 |
|
}, |
|
'real_web_photo_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'real_web_photo_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/real_web_photo_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'real_web_photo_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/real_web_photo_x4.onnx') |
|
} |
|
}, |
|
'size': (64, 4, 2), |
|
'scale': 4 |
|
}, |
|
'realistic_rescaler_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'realistic_rescaler_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/realistic_rescaler_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'realistic_rescaler_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/realistic_rescaler_x4.onnx') |
|
} |
|
}, |
|
'size': (128, 8, 4), |
|
'scale': 4 |
|
}, |
|
'remacri_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'remacri_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/remacri_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'remacri_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/remacri_x4.onnx') |
|
} |
|
}, |
|
'size': (128, 8, 4), |
|
'scale': 4 |
|
}, |
|
'siax_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'siax_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/siax_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'siax_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/siax_x4.onnx') |
|
} |
|
}, |
|
'size': (128, 8, 4), |
|
'scale': 4 |
|
}, |
|
'span_kendata_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'span_kendata_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/span_kendata_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'span_kendata_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/span_kendata_x4.onnx') |
|
} |
|
}, |
|
'size': (128, 8, 4), |
|
'scale': 4 |
|
}, |
|
'swin2_sr_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'swin2_sr_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/swin2_sr_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.1.0', 'swin2_sr_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/swin2_sr_x4.onnx') |
|
} |
|
}, |
|
'size': (128, 8, 4), |
|
'scale': 4 |
|
}, |
|
'ultra_sharp_x4': |
|
{ |
|
'hashes': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'ultra_sharp_x4.hash'), |
|
'path': resolve_relative_path('../.assets/models/ultra_sharp_x4.hash') |
|
} |
|
}, |
|
'sources': |
|
{ |
|
'frame_enhancer': |
|
{ |
|
'url': resolve_download_url('models-3.0.0', 'ultra_sharp_x4.onnx'), |
|
'path': resolve_relative_path('../.assets/models/ultra_sharp_x4.onnx') |
|
} |
|
}, |
|
'size': (128, 8, 4), |
|
'scale': 4 |
|
} |
|
} |
|
|
|
|
|
def get_inference_pool() -> InferencePool: |
|
model_names = [ get_frame_enhancer_model() ] |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return inference_manager.get_inference_pool(__name__, model_names, model_source_set) |
|
|
|
|
|
def clear_inference_pool() -> None: |
|
model_names = [ get_frame_enhancer_model() ] |
|
inference_manager.clear_inference_pool(__name__, model_names) |
|
|
|
|
|
def get_model_options() -> ModelOptions: |
|
frame_enhancer_model = get_frame_enhancer_model() |
|
return create_static_model_set('full').get(frame_enhancer_model) |
|
|
|
|
|
def get_frame_enhancer_model() -> str: |
|
frame_enhancer_model = state_manager.get_item('frame_enhancer_model') |
|
|
|
if has_execution_provider('coreml'): |
|
if frame_enhancer_model == 'real_esrgan_x2_fp16': |
|
return 'real_esrgan_x2' |
|
if frame_enhancer_model == 'real_esrgan_x4_fp16': |
|
return 'real_esrgan_x4' |
|
if frame_enhancer_model == 'real_esrgan_x8_fp16': |
|
return 'real_esrgan_x8' |
|
return frame_enhancer_model |
|
|
|
|
|
def register_args(program : ArgumentParser) -> None: |
|
group_processors = find_argument_group(program, 'processors') |
|
if group_processors: |
|
group_processors.add_argument('--frame-enhancer-model', help = wording.get('help.frame_enhancer_model'), default = config.get_str_value('processors', 'frame_enhancer_model', 'span_kendata_x4'), choices = processors_choices.frame_enhancer_models) |
|
group_processors.add_argument('--frame-enhancer-blend', help = wording.get('help.frame_enhancer_blend'), type = int, default = config.get_int_value('processors', 'frame_enhancer_blend', '80'), choices = processors_choices.frame_enhancer_blend_range, metavar = create_int_metavar(processors_choices.frame_enhancer_blend_range)) |
|
facefusion.jobs.job_store.register_step_keys([ 'frame_enhancer_model', 'frame_enhancer_blend' ]) |
|
|
|
|
|
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None: |
|
apply_state_item('frame_enhancer_model', args.get('frame_enhancer_model')) |
|
apply_state_item('frame_enhancer_blend', args.get('frame_enhancer_blend')) |
|
|
|
|
|
def pre_check() -> bool: |
|
model_hash_set = get_model_options().get('hashes') |
|
model_source_set = get_model_options().get('sources') |
|
|
|
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) |
|
|
|
|
|
def pre_process(mode : ProcessMode) -> bool: |
|
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')): |
|
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
if mode == 'output' and not in_directory(state_manager.get_item('output_path')): |
|
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
if mode == 'output' and not same_file_extension(state_manager.get_item('target_path'), state_manager.get_item('output_path')): |
|
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__) |
|
return False |
|
return True |
|
|
|
|
|
def post_process() -> None: |
|
read_static_image.cache_clear() |
|
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]: |
|
clear_inference_pool() |
|
if state_manager.get_item('video_memory_strategy') == 'strict': |
|
content_analyser.clear_inference_pool() |
|
|
|
|
|
def enhance_frame(temp_vision_frame : VisionFrame) -> VisionFrame: |
|
model_size = get_model_options().get('size') |
|
model_scale = get_model_options().get('scale') |
|
temp_height, temp_width = temp_vision_frame.shape[:2] |
|
tile_vision_frames, pad_width, pad_height = create_tile_frames(temp_vision_frame, model_size) |
|
|
|
for index, tile_vision_frame in enumerate(tile_vision_frames): |
|
tile_vision_frame = prepare_tile_frame(tile_vision_frame) |
|
tile_vision_frame = forward(tile_vision_frame) |
|
tile_vision_frames[index] = normalize_tile_frame(tile_vision_frame) |
|
|
|
merge_vision_frame = merge_tile_frames(tile_vision_frames, temp_width * model_scale, temp_height * model_scale, pad_width * model_scale, pad_height * model_scale, (model_size[0] * model_scale, model_size[1] * model_scale, model_size[2] * model_scale)) |
|
temp_vision_frame = blend_frame(temp_vision_frame, merge_vision_frame) |
|
return temp_vision_frame |
|
|
|
|
|
def forward(tile_vision_frame : VisionFrame) -> VisionFrame: |
|
frame_enhancer = get_inference_pool().get('frame_enhancer') |
|
|
|
with conditional_thread_semaphore(): |
|
tile_vision_frame = frame_enhancer.run(None, |
|
{ |
|
'input': tile_vision_frame |
|
})[0] |
|
|
|
return tile_vision_frame |
|
|
|
|
|
def prepare_tile_frame(vision_tile_frame : VisionFrame) -> VisionFrame: |
|
vision_tile_frame = numpy.expand_dims(vision_tile_frame[:, :, ::-1], axis = 0) |
|
vision_tile_frame = vision_tile_frame.transpose(0, 3, 1, 2) |
|
vision_tile_frame = vision_tile_frame.astype(numpy.float32) / 255.0 |
|
return vision_tile_frame |
|
|
|
|
|
def normalize_tile_frame(vision_tile_frame : VisionFrame) -> VisionFrame: |
|
vision_tile_frame = vision_tile_frame.transpose(0, 2, 3, 1).squeeze(0) * 255 |
|
vision_tile_frame = vision_tile_frame.clip(0, 255).astype(numpy.uint8)[:, :, ::-1] |
|
return vision_tile_frame |
|
|
|
|
|
def blend_frame(temp_vision_frame : VisionFrame, merge_vision_frame : VisionFrame) -> VisionFrame: |
|
frame_enhancer_blend = 1 - (state_manager.get_item('frame_enhancer_blend') / 100) |
|
temp_vision_frame = cv2.resize(temp_vision_frame, (merge_vision_frame.shape[1], merge_vision_frame.shape[0])) |
|
temp_vision_frame = cv2.addWeighted(temp_vision_frame, frame_enhancer_blend, merge_vision_frame, 1 - frame_enhancer_blend, 0) |
|
return temp_vision_frame |
|
|
|
|
|
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: |
|
pass |
|
|
|
|
|
def process_frame(inputs : FrameEnhancerInputs) -> VisionFrame: |
|
target_vision_frame = inputs.get('target_vision_frame') |
|
return enhance_frame(target_vision_frame) |
|
|
|
|
|
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: |
|
for queue_payload in process_manager.manage(queue_payloads): |
|
target_vision_path = queue_payload['frame_path'] |
|
target_vision_frame = read_image(target_vision_path) |
|
output_vision_frame = process_frame( |
|
{ |
|
'target_vision_frame': target_vision_frame |
|
}) |
|
write_image(target_vision_path, output_vision_frame) |
|
update_progress(1) |
|
|
|
|
|
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None: |
|
target_vision_frame = read_static_image(target_path) |
|
output_vision_frame = process_frame( |
|
{ |
|
'target_vision_frame': target_vision_frame |
|
}) |
|
write_image(output_path, output_vision_frame) |
|
|
|
|
|
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: |
|
processors.multi_process_frames(None, temp_frame_paths, process_frames) |
|
|