|
from typing import Any, Dict |
|
|
|
import numpy |
|
|
|
from facefusion import logger, state_manager |
|
from facefusion.face_store import get_face_store |
|
from facefusion.types import FaceSet |
|
|
|
|
|
def create_statistics(static_faces : FaceSet) -> Dict[str, Any]: |
|
face_detector_scores = [] |
|
face_landmarker_scores = [] |
|
statistics =\ |
|
{ |
|
'min_face_detector_score': 0, |
|
'min_face_landmarker_score': 0, |
|
'max_face_detector_score': 0, |
|
'max_face_landmarker_score': 0, |
|
'average_face_detector_score': 0, |
|
'average_face_landmarker_score': 0, |
|
'total_face_landmark_5_fallbacks': 0, |
|
'total_frames_with_faces': 0, |
|
'total_faces': 0 |
|
} |
|
|
|
for faces in static_faces.values(): |
|
statistics['total_frames_with_faces'] = statistics.get('total_frames_with_faces') + 1 |
|
for face in faces: |
|
statistics['total_faces'] = statistics.get('total_faces') + 1 |
|
face_detector_scores.append(face.score_set.get('detector')) |
|
face_landmarker_scores.append(face.score_set.get('landmarker')) |
|
if numpy.array_equal(face.landmark_set.get('5'), face.landmark_set.get('5/68')): |
|
statistics['total_face_landmark_5_fallbacks'] = statistics.get('total_face_landmark_5_fallbacks') + 1 |
|
|
|
if face_detector_scores: |
|
statistics['min_face_detector_score'] = round(min(face_detector_scores), 2) |
|
statistics['max_face_detector_score'] = round(max(face_detector_scores), 2) |
|
statistics['average_face_detector_score'] = round(numpy.mean(face_detector_scores), 2) |
|
if face_landmarker_scores: |
|
statistics['min_face_landmarker_score'] = round(min(face_landmarker_scores), 2) |
|
statistics['max_face_landmarker_score'] = round(max(face_landmarker_scores), 2) |
|
statistics['average_face_landmarker_score'] = round(numpy.mean(face_landmarker_scores), 2) |
|
return statistics |
|
|
|
|
|
def conditional_log_statistics() -> None: |
|
if state_manager.get_item('log_level') == 'debug': |
|
statistics = create_statistics(get_face_store().get('static_faces')) |
|
|
|
for name, value in statistics.items(): |
|
logger.debug(str(name) + ': ' + str(value), __name__) |
|
|