from argparse import ArgumentParser from functools import lru_cache from typing import List, Tuple import cv2 import numpy import facefusion.jobs.job_manager import facefusion.jobs.job_store import facefusion.processors.core as processors from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording from facefusion.common_helper import create_float_metavar from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url from facefusion.face_analyser import get_many_faces, get_one_face from facefusion.face_helper import paste_back, scale_face_landmark_5, warp_face_by_face_landmark_5 from facefusion.face_masker import create_static_box_mask from facefusion.face_selector import find_similar_faces, sort_and_filter_faces from facefusion.face_store import get_reference_faces from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension from facefusion.processors import choices as processors_choices from facefusion.processors.live_portrait import create_rotation, limit_euler_angles, limit_expression from facefusion.processors.types import FaceEditorInputs, LivePortraitExpression, LivePortraitFeatureVolume, LivePortraitMotionPoints, LivePortraitPitch, LivePortraitRoll, LivePortraitRotation, LivePortraitScale, LivePortraitTranslation, LivePortraitYaw from facefusion.program_helper import find_argument_group from facefusion.thread_helper import conditional_thread_semaphore, thread_semaphore from facefusion.types import ApplyStateItem, Args, DownloadScope, Face, FaceLandmark68, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame from facefusion.vision import read_image, read_static_image, write_image @lru_cache(maxsize = None) def create_static_model_set(download_scope : DownloadScope) -> ModelSet: return\ { 'live_portrait': { 'hashes': { 'feature_extractor': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_feature_extractor.hash'), 'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.hash') }, 'motion_extractor': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_motion_extractor.hash'), 'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.hash') }, 'eye_retargeter': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_eye_retargeter.hash'), 'path': resolve_relative_path('../.assets/models/live_portrait_eye_retargeter.hash') }, 'lip_retargeter': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_lip_retargeter.hash'), 'path': resolve_relative_path('../.assets/models/live_portrait_lip_retargeter.hash') }, 'stitcher': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_stitcher.hash'), 'path': resolve_relative_path('../.assets/models/live_portrait_stitcher.hash') }, 'generator': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_generator.hash'), 'path': resolve_relative_path('../.assets/models/live_portrait_generator.hash') } }, 'sources': { 'feature_extractor': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_feature_extractor.onnx'), 'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.onnx') }, 'motion_extractor': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_motion_extractor.onnx'), 'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.onnx') }, 'eye_retargeter': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_eye_retargeter.onnx'), 'path': resolve_relative_path('../.assets/models/live_portrait_eye_retargeter.onnx') }, 'lip_retargeter': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_lip_retargeter.onnx'), 'path': resolve_relative_path('../.assets/models/live_portrait_lip_retargeter.onnx') }, 'stitcher': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_stitcher.onnx'), 'path': resolve_relative_path('../.assets/models/live_portrait_stitcher.onnx') }, 'generator': { 'url': resolve_download_url('models-3.0.0', 'live_portrait_generator.onnx'), 'path': resolve_relative_path('../.assets/models/live_portrait_generator.onnx') } }, 'template': 'ffhq_512', 'size': (512, 512) } } def get_inference_pool() -> InferencePool: model_names = [ state_manager.get_item('face_editor_model') ] model_source_set = get_model_options().get('sources') return inference_manager.get_inference_pool(__name__, model_names, model_source_set) def clear_inference_pool() -> None: model_names = [ state_manager.get_item('face_editor_model') ] inference_manager.clear_inference_pool(__name__, model_names) def get_model_options() -> ModelOptions: face_editor_model = state_manager.get_item('face_editor_model') return create_static_model_set('full').get(face_editor_model) def register_args(program : ArgumentParser) -> None: group_processors = find_argument_group(program, 'processors') if group_processors: group_processors.add_argument('--face-editor-model', help = wording.get('help.face_editor_model'), default = config.get_str_value('processors', 'face_editor_model', 'live_portrait'), choices = processors_choices.face_editor_models) group_processors.add_argument('--face-editor-eyebrow-direction', help = wording.get('help.face_editor_eyebrow_direction'), type = float, default = config.get_float_value('processors', 'face_editor_eyebrow_direction', '0'), choices = processors_choices.face_editor_eyebrow_direction_range, metavar = create_float_metavar(processors_choices.face_editor_eyebrow_direction_range)) group_processors.add_argument('--face-editor-eye-gaze-horizontal', help = wording.get('help.face_editor_eye_gaze_horizontal'), type = float, default = config.get_float_value('processors', 'face_editor_eye_gaze_horizontal', '0'), choices = processors_choices.face_editor_eye_gaze_horizontal_range, metavar = create_float_metavar(processors_choices.face_editor_eye_gaze_horizontal_range)) group_processors.add_argument('--face-editor-eye-gaze-vertical', help = wording.get('help.face_editor_eye_gaze_vertical'), type = float, default = config.get_float_value('processors', 'face_editor_eye_gaze_vertical', '0'), choices = processors_choices.face_editor_eye_gaze_vertical_range, metavar = create_float_metavar(processors_choices.face_editor_eye_gaze_vertical_range)) group_processors.add_argument('--face-editor-eye-open-ratio', help = wording.get('help.face_editor_eye_open_ratio'), type = float, default = config.get_float_value('processors', 'face_editor_eye_open_ratio', '0'), choices = processors_choices.face_editor_eye_open_ratio_range, metavar = create_float_metavar(processors_choices.face_editor_eye_open_ratio_range)) group_processors.add_argument('--face-editor-lip-open-ratio', help = wording.get('help.face_editor_lip_open_ratio'), type = float, default = config.get_float_value('processors', 'face_editor_lip_open_ratio', '0'), choices = processors_choices.face_editor_lip_open_ratio_range, metavar = create_float_metavar(processors_choices.face_editor_lip_open_ratio_range)) group_processors.add_argument('--face-editor-mouth-grim', help = wording.get('help.face_editor_mouth_grim'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_grim', '0'), choices = processors_choices.face_editor_mouth_grim_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_grim_range)) group_processors.add_argument('--face-editor-mouth-pout', help = wording.get('help.face_editor_mouth_pout'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_pout', '0'), choices = processors_choices.face_editor_mouth_pout_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_pout_range)) group_processors.add_argument('--face-editor-mouth-purse', help = wording.get('help.face_editor_mouth_purse'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_purse', '0'), choices = processors_choices.face_editor_mouth_purse_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_purse_range)) group_processors.add_argument('--face-editor-mouth-smile', help = wording.get('help.face_editor_mouth_smile'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_smile', '0'), choices = processors_choices.face_editor_mouth_smile_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_smile_range)) group_processors.add_argument('--face-editor-mouth-position-horizontal', help = wording.get('help.face_editor_mouth_position_horizontal'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_position_horizontal', '0'), choices = processors_choices.face_editor_mouth_position_horizontal_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_position_horizontal_range)) group_processors.add_argument('--face-editor-mouth-position-vertical', help = wording.get('help.face_editor_mouth_position_vertical'), type = float, default = config.get_float_value('processors', 'face_editor_mouth_position_vertical', '0'), choices = processors_choices.face_editor_mouth_position_vertical_range, metavar = create_float_metavar(processors_choices.face_editor_mouth_position_vertical_range)) group_processors.add_argument('--face-editor-head-pitch', help = wording.get('help.face_editor_head_pitch'), type = float, default = config.get_float_value('processors', 'face_editor_head_pitch', '0'), choices = processors_choices.face_editor_head_pitch_range, metavar = create_float_metavar(processors_choices.face_editor_head_pitch_range)) group_processors.add_argument('--face-editor-head-yaw', help = wording.get('help.face_editor_head_yaw'), type = float, default = config.get_float_value('processors', 'face_editor_head_yaw', '0'), choices = processors_choices.face_editor_head_yaw_range, metavar = create_float_metavar(processors_choices.face_editor_head_yaw_range)) group_processors.add_argument('--face-editor-head-roll', help = wording.get('help.face_editor_head_roll'), type = float, default = config.get_float_value('processors', 'face_editor_head_roll', '0'), choices = processors_choices.face_editor_head_roll_range, metavar = create_float_metavar(processors_choices.face_editor_head_roll_range)) facefusion.jobs.job_store.register_step_keys([ 'face_editor_model', 'face_editor_eyebrow_direction', 'face_editor_eye_gaze_horizontal', 'face_editor_eye_gaze_vertical', 'face_editor_eye_open_ratio', 'face_editor_lip_open_ratio', 'face_editor_mouth_grim', 'face_editor_mouth_pout', 'face_editor_mouth_purse', 'face_editor_mouth_smile', 'face_editor_mouth_position_horizontal', 'face_editor_mouth_position_vertical', 'face_editor_head_pitch', 'face_editor_head_yaw', 'face_editor_head_roll' ]) def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None: apply_state_item('face_editor_model', args.get('face_editor_model')) apply_state_item('face_editor_eyebrow_direction', args.get('face_editor_eyebrow_direction')) apply_state_item('face_editor_eye_gaze_horizontal', args.get('face_editor_eye_gaze_horizontal')) apply_state_item('face_editor_eye_gaze_vertical', args.get('face_editor_eye_gaze_vertical')) apply_state_item('face_editor_eye_open_ratio', args.get('face_editor_eye_open_ratio')) apply_state_item('face_editor_lip_open_ratio', args.get('face_editor_lip_open_ratio')) apply_state_item('face_editor_mouth_grim', args.get('face_editor_mouth_grim')) apply_state_item('face_editor_mouth_pout', args.get('face_editor_mouth_pout')) apply_state_item('face_editor_mouth_purse', args.get('face_editor_mouth_purse')) apply_state_item('face_editor_mouth_smile', args.get('face_editor_mouth_smile')) apply_state_item('face_editor_mouth_position_horizontal', args.get('face_editor_mouth_position_horizontal')) apply_state_item('face_editor_mouth_position_vertical', args.get('face_editor_mouth_position_vertical')) apply_state_item('face_editor_head_pitch', args.get('face_editor_head_pitch')) apply_state_item('face_editor_head_yaw', args.get('face_editor_head_yaw')) apply_state_item('face_editor_head_roll', args.get('face_editor_head_roll')) def pre_check() -> bool: model_hash_set = get_model_options().get('hashes') model_source_set = get_model_options().get('sources') return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) def pre_process(mode : ProcessMode) -> bool: if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')): logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__) return False if mode == 'output' and not in_directory(state_manager.get_item('output_path')): logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__) return False if mode == 'output' and not same_file_extension(state_manager.get_item('target_path'), state_manager.get_item('output_path')): logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__) return False return True def post_process() -> None: read_static_image.cache_clear() if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]: clear_inference_pool() if state_manager.get_item('video_memory_strategy') == 'strict': content_analyser.clear_inference_pool() face_classifier.clear_inference_pool() face_detector.clear_inference_pool() face_landmarker.clear_inference_pool() face_masker.clear_inference_pool() face_recognizer.clear_inference_pool() def edit_face(target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: model_template = get_model_options().get('template') model_size = get_model_options().get('size') face_landmark_5 = scale_face_landmark_5(target_face.landmark_set.get('5/68'), 1.5) crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, face_landmark_5, model_template, model_size) box_mask = create_static_box_mask(crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), (0, 0, 0, 0)) crop_vision_frame = prepare_crop_frame(crop_vision_frame) crop_vision_frame = apply_edit(crop_vision_frame, target_face.landmark_set.get('68')) crop_vision_frame = normalize_crop_frame(crop_vision_frame) temp_vision_frame = paste_back(temp_vision_frame, crop_vision_frame, box_mask, affine_matrix) return temp_vision_frame def apply_edit(crop_vision_frame : VisionFrame, face_landmark_68 : FaceLandmark68) -> VisionFrame: feature_volume = forward_extract_feature(crop_vision_frame) pitch, yaw, roll, scale, translation, expression, motion_points = forward_extract_motion(crop_vision_frame) rotation = create_rotation(pitch, yaw, roll) motion_points_target = scale * (motion_points @ rotation.T + expression) + translation expression = edit_eye_gaze(expression) expression = edit_mouth_grim(expression) expression = edit_mouth_position(expression) expression = edit_mouth_pout(expression) expression = edit_mouth_purse(expression) expression = edit_mouth_smile(expression) expression = edit_eyebrow_direction(expression) expression = limit_expression(expression) rotation = edit_head_rotation(pitch, yaw, roll) motion_points_source = motion_points @ rotation.T motion_points_source += expression motion_points_source *= scale motion_points_source += translation motion_points_source += edit_eye_open(motion_points_target, face_landmark_68) motion_points_source += edit_lip_open(motion_points_target, face_landmark_68) motion_points_source = forward_stitch_motion_points(motion_points_source, motion_points_target) crop_vision_frame = forward_generate_frame(feature_volume, motion_points_source, motion_points_target) return crop_vision_frame def forward_extract_feature(crop_vision_frame : VisionFrame) -> LivePortraitFeatureVolume: feature_extractor = get_inference_pool().get('feature_extractor') with conditional_thread_semaphore(): feature_volume = feature_extractor.run(None, { 'input': crop_vision_frame })[0] return feature_volume def forward_extract_motion(crop_vision_frame : VisionFrame) -> Tuple[LivePortraitPitch, LivePortraitYaw, LivePortraitRoll, LivePortraitScale, LivePortraitTranslation, LivePortraitExpression, LivePortraitMotionPoints]: motion_extractor = get_inference_pool().get('motion_extractor') with conditional_thread_semaphore(): pitch, yaw, roll, scale, translation, expression, motion_points = motion_extractor.run(None, { 'input': crop_vision_frame }) return pitch, yaw, roll, scale, translation, expression, motion_points def forward_retarget_eye(eye_motion_points : LivePortraitMotionPoints) -> LivePortraitMotionPoints: eye_retargeter = get_inference_pool().get('eye_retargeter') with conditional_thread_semaphore(): eye_motion_points = eye_retargeter.run(None, { 'input': eye_motion_points })[0] return eye_motion_points def forward_retarget_lip(lip_motion_points : LivePortraitMotionPoints) -> LivePortraitMotionPoints: lip_retargeter = get_inference_pool().get('lip_retargeter') with conditional_thread_semaphore(): lip_motion_points = lip_retargeter.run(None, { 'input': lip_motion_points })[0] return lip_motion_points def forward_stitch_motion_points(source_motion_points : LivePortraitMotionPoints, target_motion_points : LivePortraitMotionPoints) -> LivePortraitMotionPoints: stitcher = get_inference_pool().get('stitcher') with thread_semaphore(): motion_points = stitcher.run(None, { 'source': source_motion_points, 'target': target_motion_points })[0] return motion_points def forward_generate_frame(feature_volume : LivePortraitFeatureVolume, source_motion_points : LivePortraitMotionPoints, target_motion_points : LivePortraitMotionPoints) -> VisionFrame: generator = get_inference_pool().get('generator') with thread_semaphore(): crop_vision_frame = generator.run(None, { 'feature_volume': feature_volume, 'source': source_motion_points, 'target': target_motion_points })[0][0] return crop_vision_frame def edit_eyebrow_direction(expression : LivePortraitExpression) -> LivePortraitExpression: face_editor_eyebrow = state_manager.get_item('face_editor_eyebrow_direction') if face_editor_eyebrow > 0: expression[0, 1, 1] += numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.015, 0.015 ]) expression[0, 2, 1] -= numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.020, 0.020 ]) else: expression[0, 1, 0] -= numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.015, 0.015 ]) expression[0, 2, 0] += numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.020, 0.020 ]) expression[0, 1, 1] += numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.005, 0.005 ]) expression[0, 2, 1] -= numpy.interp(face_editor_eyebrow, [ -1, 1 ], [ -0.005, 0.005 ]) return expression def edit_eye_gaze(expression : LivePortraitExpression) -> LivePortraitExpression: face_editor_eye_gaze_horizontal = state_manager.get_item('face_editor_eye_gaze_horizontal') face_editor_eye_gaze_vertical = state_manager.get_item('face_editor_eye_gaze_vertical') if face_editor_eye_gaze_horizontal > 0: expression[0, 11, 0] += numpy.interp(face_editor_eye_gaze_horizontal, [ -1, 1 ], [ -0.015, 0.015 ]) expression[0, 15, 0] += numpy.interp(face_editor_eye_gaze_horizontal, [ -1, 1 ], [ -0.020, 0.020 ]) else: expression[0, 11, 0] += numpy.interp(face_editor_eye_gaze_horizontal, [ -1, 1 ], [ -0.020, 0.020 ]) expression[0, 15, 0] += numpy.interp(face_editor_eye_gaze_horizontal, [ -1, 1 ], [ -0.015, 0.015 ]) expression[0, 1, 1] += numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.0025, 0.0025 ]) expression[0, 2, 1] -= numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.0025, 0.0025 ]) expression[0, 11, 1] -= numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.010, 0.010 ]) expression[0, 13, 1] -= numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.005, 0.005 ]) expression[0, 15, 1] -= numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.010, 0.010 ]) expression[0, 16, 1] -= numpy.interp(face_editor_eye_gaze_vertical, [ -1, 1 ], [ -0.005, 0.005 ]) return expression def edit_eye_open(motion_points : LivePortraitMotionPoints, face_landmark_68 : FaceLandmark68) -> LivePortraitMotionPoints: face_editor_eye_open_ratio = state_manager.get_item('face_editor_eye_open_ratio') left_eye_ratio = calc_distance_ratio(face_landmark_68, 37, 40, 39, 36) right_eye_ratio = calc_distance_ratio(face_landmark_68, 43, 46, 45, 42) if face_editor_eye_open_ratio < 0: eye_motion_points = numpy.concatenate([ motion_points.ravel(), [ left_eye_ratio, right_eye_ratio, 0.0 ] ]) else: eye_motion_points = numpy.concatenate([ motion_points.ravel(), [ left_eye_ratio, right_eye_ratio, 0.6 ] ]) eye_motion_points = eye_motion_points.reshape(1, -1).astype(numpy.float32) eye_motion_points = forward_retarget_eye(eye_motion_points) * numpy.abs(face_editor_eye_open_ratio) eye_motion_points = eye_motion_points.reshape(-1, 21, 3) return eye_motion_points def edit_lip_open(motion_points : LivePortraitMotionPoints, face_landmark_68 : FaceLandmark68) -> LivePortraitMotionPoints: face_editor_lip_open_ratio = state_manager.get_item('face_editor_lip_open_ratio') lip_ratio = calc_distance_ratio(face_landmark_68, 62, 66, 54, 48) if face_editor_lip_open_ratio < 0: lip_motion_points = numpy.concatenate([ motion_points.ravel(), [ lip_ratio, 0.0 ] ]) else: lip_motion_points = numpy.concatenate([ motion_points.ravel(), [ lip_ratio, 1.0 ] ]) lip_motion_points = lip_motion_points.reshape(1, -1).astype(numpy.float32) lip_motion_points = forward_retarget_lip(lip_motion_points) * numpy.abs(face_editor_lip_open_ratio) lip_motion_points = lip_motion_points.reshape(-1, 21, 3) return lip_motion_points def edit_mouth_grim(expression : LivePortraitExpression) -> LivePortraitExpression: face_editor_mouth_grim = state_manager.get_item('face_editor_mouth_grim') if face_editor_mouth_grim > 0: expression[0, 17, 2] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.005, 0.005 ]) expression[0, 19, 2] += numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.01, 0.01 ]) expression[0, 20, 1] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.06, 0.06 ]) expression[0, 20, 2] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.03, 0.03 ]) else: expression[0, 19, 1] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.05, 0.05 ]) expression[0, 19, 2] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.02, 0.02 ]) expression[0, 20, 2] -= numpy.interp(face_editor_mouth_grim, [ -1, 1 ], [ -0.03, 0.03 ]) return expression def edit_mouth_position(expression : LivePortraitExpression) -> LivePortraitExpression: face_editor_mouth_position_horizontal = state_manager.get_item('face_editor_mouth_position_horizontal') face_editor_mouth_position_vertical = state_manager.get_item('face_editor_mouth_position_vertical') expression[0, 19, 0] += numpy.interp(face_editor_mouth_position_horizontal, [ -1, 1 ], [ -0.05, 0.05 ]) expression[0, 20, 0] += numpy.interp(face_editor_mouth_position_horizontal, [ -1, 1 ], [ -0.04, 0.04 ]) if face_editor_mouth_position_vertical > 0: expression[0, 19, 1] -= numpy.interp(face_editor_mouth_position_vertical, [ -1, 1 ], [ -0.04, 0.04 ]) expression[0, 20, 1] -= numpy.interp(face_editor_mouth_position_vertical, [ -1, 1 ], [ -0.02, 0.02 ]) else: expression[0, 19, 1] -= numpy.interp(face_editor_mouth_position_vertical, [ -1, 1 ], [ -0.05, 0.05 ]) expression[0, 20, 1] -= numpy.interp(face_editor_mouth_position_vertical, [ -1, 1 ], [ -0.04, 0.04 ]) return expression def edit_mouth_pout(expression : LivePortraitExpression) -> LivePortraitExpression: face_editor_mouth_pout = state_manager.get_item('face_editor_mouth_pout') if face_editor_mouth_pout > 0: expression[0, 19, 1] -= numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.022, 0.022 ]) expression[0, 19, 2] += numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.025, 0.025 ]) expression[0, 20, 2] -= numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.002, 0.002 ]) else: expression[0, 19, 1] += numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.022, 0.022 ]) expression[0, 19, 2] += numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.025, 0.025 ]) expression[0, 20, 2] -= numpy.interp(face_editor_mouth_pout, [ -1, 1 ], [ -0.002, 0.002 ]) return expression def edit_mouth_purse(expression : LivePortraitExpression) -> LivePortraitExpression: face_editor_mouth_purse = state_manager.get_item('face_editor_mouth_purse') if face_editor_mouth_purse > 0: expression[0, 19, 1] -= numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.04, 0.04 ]) expression[0, 19, 2] -= numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.02, 0.02 ]) else: expression[0, 14, 1] -= numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.02, 0.02 ]) expression[0, 17, 2] += numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.01, 0.01 ]) expression[0, 19, 2] -= numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.015, 0.015 ]) expression[0, 20, 2] -= numpy.interp(face_editor_mouth_purse, [ -1, 1 ], [ -0.002, 0.002 ]) return expression def edit_mouth_smile(expression : LivePortraitExpression) -> LivePortraitExpression: face_editor_mouth_smile = state_manager.get_item('face_editor_mouth_smile') if face_editor_mouth_smile > 0: expression[0, 20, 1] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.015, 0.015 ]) expression[0, 14, 1] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.025, 0.025 ]) expression[0, 17, 1] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.01, 0.01 ]) expression[0, 17, 2] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.004, 0.004 ]) expression[0, 3, 1] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.0045, 0.0045 ]) expression[0, 7, 1] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.0045, 0.0045 ]) else: expression[0, 14, 1] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.02, 0.02 ]) expression[0, 17, 1] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.003, 0.003 ]) expression[0, 19, 1] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.02, 0.02 ]) expression[0, 19, 2] -= numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.005, 0.005 ]) expression[0, 20, 2] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.01, 0.01 ]) expression[0, 3, 1] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.0045, 0.0045 ]) expression[0, 7, 1] += numpy.interp(face_editor_mouth_smile, [ -1, 1 ], [ -0.0045, 0.0045 ]) return expression def edit_head_rotation(pitch : LivePortraitPitch, yaw : LivePortraitYaw, roll : LivePortraitRoll) -> LivePortraitRotation: face_editor_head_pitch = state_manager.get_item('face_editor_head_pitch') face_editor_head_yaw = state_manager.get_item('face_editor_head_yaw') face_editor_head_roll = state_manager.get_item('face_editor_head_roll') edit_pitch = pitch + float(numpy.interp(face_editor_head_pitch, [ -1, 1 ], [ 20, -20 ])) edit_yaw = yaw + float(numpy.interp(face_editor_head_yaw, [ -1, 1 ], [ 60, -60 ])) edit_roll = roll + float(numpy.interp(face_editor_head_roll, [ -1, 1 ], [ -15, 15 ])) edit_pitch, edit_yaw, edit_roll = limit_euler_angles(pitch, yaw, roll, edit_pitch, edit_yaw, edit_roll) rotation = create_rotation(edit_pitch, edit_yaw, edit_roll) return rotation def calc_distance_ratio(face_landmark_68 : FaceLandmark68, top_index : int, bottom_index : int, left_index : int, right_index : int) -> float: vertical_direction = face_landmark_68[top_index] - face_landmark_68[bottom_index] horizontal_direction = face_landmark_68[left_index] - face_landmark_68[right_index] distance_ratio = float(numpy.linalg.norm(vertical_direction) / (numpy.linalg.norm(horizontal_direction) + 1e-6)) return distance_ratio def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: model_size = get_model_options().get('size') prepare_size = (model_size[0] // 2, model_size[1] // 2) crop_vision_frame = cv2.resize(crop_vision_frame, prepare_size, interpolation = cv2.INTER_AREA) crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0 crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) return crop_vision_frame def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame: crop_vision_frame = crop_vision_frame.transpose(1, 2, 0).clip(0, 1) crop_vision_frame = (crop_vision_frame * 255.0) crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1] return crop_vision_frame def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: pass def process_frame(inputs : FaceEditorInputs) -> VisionFrame: reference_faces = inputs.get('reference_faces') target_vision_frame = inputs.get('target_vision_frame') many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ])) if state_manager.get_item('face_selector_mode') == 'many': if many_faces: for target_face in many_faces: target_vision_frame = edit_face(target_face, target_vision_frame) if state_manager.get_item('face_selector_mode') == 'one': target_face = get_one_face(many_faces) if target_face: target_vision_frame = edit_face(target_face, target_vision_frame) if state_manager.get_item('face_selector_mode') == 'reference': similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance')) if similar_faces: for similar_face in similar_faces: target_vision_frame = edit_face(similar_face, target_vision_frame) return target_vision_frame def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None for queue_payload in process_manager.manage(queue_payloads): target_vision_path = queue_payload['frame_path'] target_vision_frame = read_image(target_vision_path) output_vision_frame = process_frame( { 'reference_faces': reference_faces, 'target_vision_frame': target_vision_frame }) write_image(target_vision_path, output_vision_frame) update_progress(1) def process_image(source_path : str, target_path : str, output_path : str) -> None: reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None target_vision_frame = read_static_image(target_path) output_vision_frame = process_frame( { 'reference_faces': reference_faces, 'target_vision_frame': target_vision_frame }) write_image(output_path, output_vision_frame) def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: processors.multi_process_frames(None, temp_frame_paths, process_frames)