Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,272 Bytes
12a8757 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
#!/usr/bin/env python3
"""
Just search - A Smart Search Agent using Menlo/Lucy-128k
Part of the Just, AKA Simple series
Built with Gradio, DuckDuckGo Search, and Hugging Face Transformers
"""
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from duckduckgo_search import DDGS
import json
import re
import time
from typing import List, Dict, Tuple
import spaces
# Initialize the model and tokenizer globally for efficiency
MODEL_NAME = "Menlo/Lucy-128k"
tokenizer = None
model = None
search_pipeline = None
def initialize_model():
"""Initialize the Menlo/Lucy-128k model and tokenizer"""
global tokenizer, model, search_pipeline
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
max_length=131072, # 128k context length
rope_scaling={"type": "linear", "factor": 1.0} # Enable extended context
)
search_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16,
device_map="auto",
max_new_tokens=16384, # 16k max output
temperature=0.3,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
return True
except Exception as e:
print(f"Error initializing model: {e}")
return False
def extract_thinking_and_response(text: str) -> Tuple[str, str]:
"""Extract thinking process and clean response from AI output"""
thinking = ""
response = text
# Multiple patterns for thinking extraction
patterns = [
(r'<think>(.*?)</think>', 1),
(r'<thinking>(.*?)</thinking>', 1),
(r'(Let me think about.*?)(?=\n\n|\n[A-Z]|$)', 1), # Catch untagged thinking
]
for pattern, group_idx in patterns:
thinking_match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
if thinking_match:
thinking = thinking_match.group(group_idx).strip()
response = re.sub(pattern, '', text, flags=re.DOTALL | re.IGNORECASE)
break
# If no thinking found but text looks like reasoning, extract it
if not thinking and ('let me think' in text.lower() or 'i need to consider' in text.lower()):
lines = text.split('\n')
thinking_lines = []
response_lines = []
in_thinking = False
for line in lines:
lower_line = line.lower().strip()
if any(phrase in lower_line for phrase in ['let me think', 'i need to consider', 'first,', 'the user is asking']):
in_thinking = True
thinking_lines.append(line)
elif in_thinking and (line.strip().startswith(('β’', '-', '1.', '2.', '3.')) or len(line.strip()) < 5):
in_thinking = False
response_lines.append(line)
elif in_thinking:
thinking_lines.append(line)
else:
response_lines.append(line)
if thinking_lines:
thinking = '\n'.join(thinking_lines).strip()
response = '\n'.join(response_lines).strip()
# Clean up the response
response = re.sub(r'^(Assistant:|AI:|Response:|Answer:)\s*', '', response.strip())
response = re.sub(r'\[INST\].*?\[\/INST\]', '', response, flags=re.DOTALL)
response = re.sub(r'<\|.*?\|>', '', response)
# Remove any remaining thinking artifacts from response
response = re.sub(r'Let me think.*?(?=\n\n|\n[A-Z]|$)', '', response, flags=re.DOTALL | re.IGNORECASE)
response = re.sub(r'I need to consider.*?(?=\n\n|\n[A-Z]|$)', '', response, flags=re.DOTALL | re.IGNORECASE)
return thinking.strip(), response.strip()
def clean_response(text: str) -> str:
"""Clean up the AI response to extract just the relevant content"""
_, response = extract_thinking_and_response(text)
return response
@spaces.GPU
def generate_search_queries(user_query: str) -> Tuple[List[str], str]:
"""Generate multiple search queries based on user input using AI"""
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an expert search query strategist. Your task is to generate diverse, effective search queries that will find the most comprehensive information to answer the user's question.
**Your Approach:**
1. Analyze the user's question to identify key concepts, entities, and intent
2. Consider different angles: current news, technical details, background context, expert opinions
3. Use varied terminology: formal terms, common language, industry jargon, synonyms
4. Target different types of sources: news sites, academic papers, official documents, forums
**Query Requirements:**
- Generate exactly 4 distinct search queries
- Each query should be 3-8 words long
- Optimize for search engine effectiveness
- Cover different aspects or perspectives of the topic
- Use specific, relevant keywords
**Examples:**
User: "What is the current status of artificial intelligence regulation?"
Queries:
AI regulation 2024 legislation
artificial intelligence policy updates
government AI rules current
machine learning regulation news
User: "How does climate change affect coral reefs?"
Queries:
climate change coral reef impact
ocean warming coral bleaching
coral reef ecosystem changes
marine biodiversity climate effects
<|eot_id|><|start_header_id|>user<|end_header_id|>
User question: {user_query}
Generate 4 strategic search queries:
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
try:
response = search_pipeline(prompt, max_new_tokens=150, temperature=0.1)
generated_text = response[0]['generated_text']
# Extract assistant's response
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
thinking, cleaned_response = extract_thinking_and_response(assistant_response)
# Split and clean queries
lines = [line.strip() for line in cleaned_response.split('\n') if line.strip()]
# Filter to get actual search queries (remove meta-commentary)
queries = []
for line in lines:
# Skip lines that look like explanations or meta-commentary
if any(skip_word in line.lower() for skip_word in [
'user', 'question', 'query', 'search', 'generate', 'here are',
'these are', 'i will', 'let me', 'first', 'second', 'third', 'fourth',
'based on', 'the user', 'example'
]):
continue
# Skip lines with too many words (likely explanations)
if len(line.split()) > 8:
continue
# Skip numbered/bulleted lines
line_clean = re.sub(r'^\d+[\.\)]\s*', '', line)
line_clean = re.sub(r'^[\-\*\β’]\s*', '', line_clean)
line_clean = line_clean.strip('"\'')
if len(line_clean) > 3 and len(line_clean.split()) >= 2:
queries.append(line_clean)
# If we didn't get good queries, fall back to simple variations
if len(queries) < 2:
queries = [
user_query,
f"{user_query} 2024",
f"{user_query} news",
f"{user_query} latest"
]
return queries[:4], thinking
except Exception as e:
print(f"Error generating queries: {e}")
# Fallback to simple query variations
return [user_query, f"{user_query} 2024", f"{user_query} news", f"{user_query} latest"], ""
def search_web(queries: List[str]) -> List[Dict]:
"""Search the web using DuckDuckGo with multiple queries"""
all_results = []
ddgs = DDGS()
for query in queries:
try:
results = ddgs.text(query, max_results=5, region='wt-wt', safesearch='moderate')
for result in results:
result['search_query'] = query
all_results.append(result)
time.sleep(0.5) # Rate limiting
except Exception as e:
print(f"Error searching for '{query}': {e}")
continue
# Remove duplicates based on URL
seen_urls = set()
unique_results = []
for result in all_results:
if result['href'] not in seen_urls:
seen_urls.add(result['href'])
unique_results.append(result)
return unique_results[:15] # Return max 15 results
@spaces.GPU
def filter_relevant_results(user_query: str, generated_queries: List[str], search_results: List[Dict]) -> Tuple[List[Dict], str]:
"""Use AI to filter and rank search results by relevance"""
if not search_results:
return [], ""
# Prepare results summary for AI
results_text = ""
for i, result in enumerate(search_results[:15]): # Increased limit for better coverage
results_text += f"{i+1}. Title: {result.get('title', 'No title')}\n"
results_text += f" URL: {result.get('href', 'No URL')}\n"
results_text += f" Snippet: {result.get('body', 'No description')[:300]}...\n"
results_text += f" Search Query: {result.get('search_query', 'Unknown')}\n\n"
queries_text = "\n".join(f"β’ {q}" for q in generated_queries)
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are an expert information analyst specializing in search result evaluation. Your mission is to identify the highest-quality, most relevant sources that will enable a comprehensive answer to the user's question.
**Your Analysis Framework:**
**1. Relevance Assessment (40% weight):**
- How directly does the content address the user's specific question?
- Does it contain factual information needed for the answer?
- Is it focused on the core topic or just tangentially related?
**2. Source Quality & Authority (25% weight):**
- Is this from a credible, authoritative source?
- Does the source have expertise in this domain?
- Is it from official organizations, established media, academic institutions, or verified experts?
**3. Information Completeness (20% weight):**
- Does the source provide comprehensive coverage of the topic?
- Are there specific details, data, or insights that add value?
- Does it cover multiple aspects of the question?
**4. Recency & Timeliness (10% weight):**
- Is the information current and up-to-date?
- For time-sensitive topics, prioritize recent sources
- For established facts, older authoritative sources are acceptable
**5. Strategic Value (5% weight):**
- Does this complement other selected sources well?
- Does it provide unique perspectives or fill information gaps?
**Task Instructions:**
1. Carefully analyze each search result against these criteria
2. Consider how the results work together to provide comprehensive coverage
3. Select exactly 5 results that will enable the best possible answer
4. Prioritize quality over quantity - better to have fewer excellent sources
**Output Format:** Return only the numbers of your selected results, comma-separated (e.g., "1, 3, 7, 12, 14")
<|eot_id|><|start_header_id|>user<|end_header_id|>
**Original User Question:** {user_query}
**Context - Generated Search Queries:**
{queries_text}
**Search Results for Analysis:**
{results_text}
**Your Selection (5 most valuable results):**
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
try:
response = search_pipeline(prompt, max_new_tokens=300, temperature=0.1)
generated_text = response[0]['generated_text']
# Extract assistant's response
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
thinking, cleaned_response = extract_thinking_and_response(assistant_response)
# Extract numbers
numbers = re.findall(r'\d+', cleaned_response)
selected_indices = [int(n) - 1 for n in numbers if int(n) <= len(search_results)]
return [search_results[i] for i in selected_indices if 0 <= i < len(search_results)][:5], thinking
except Exception as e:
print(f"Error filtering results: {e}")
return search_results[:5], "" # Fallback to first 5 results
@spaces.GPU
def generate_final_answer(user_query: str, generated_queries: List[str], all_search_results: List[Dict], selected_results: List[Dict]) -> Tuple[str, str]:
"""Generate final answer based on complete search context"""
if not selected_results:
return "I couldn't find relevant information to answer your question. Please try rephrasing your query.", ""
# Prepare context from selected results
selected_context = ""
for i, result in enumerate(selected_results):
selected_context += f"**Source {i+1}:** {result.get('title', 'Unknown')}\n"
selected_context += f"**Content:** {result.get('body', 'No content available')}\n"
selected_context += f"**URL:** {result.get('href', 'No URL')}\n"
selected_context += f"**Found via query:** {result.get('search_query', 'Unknown')}\n\n"
# Summary of the search process
queries_text = "\n".join(f"β’ {q}" for q in generated_queries)
process_summary = f"""
**Search Process Summary:**
- Generated {len(generated_queries)} targeted search queries
- Found {len(all_search_results)} total search results
- Filtered down to {len(selected_results)} most relevant sources
"""
prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a world-class research synthesist and expert communicator. You have access to comprehensive search intelligence and must craft the definitive answer to the user's question.
**Your Complete Context:**
- Original user question and intent
- Strategic search queries designed to find comprehensive information
- Curated high-quality sources selected for maximum relevance and authority
- Full visibility into the research methodology used
**Answer Quality Standards:**
π― **Precision & Relevance (25%)**
- Address the user's exact question directly and completely
- Stay focused on their specific information needs
- Avoid tangential information that doesn't serve the core query
π **Source Integration & Synthesis (25%)**
- Weave information from multiple sources into a cohesive narrative
- Identify patterns, agreements, and contradictions across sources
- Present a unified understanding rather than separate source summaries
π **Accuracy & Verification (20%)**
- Use only information explicitly stated in the provided sources
- Clearly attribute claims to specific sources with citations
- Acknowledge when information is limited or when sources conflict
π **Structure & Clarity (15%)**
- Organize information logically with clear flow
- Use headings, bullet points, or sections when helpful
- Write in clear, accessible language appropriate for the topic
π **Completeness & Context (10%)**
- Provide sufficient background context for understanding
- Address multiple dimensions of the question when relevant
- Explain significance and implications of the findings
β‘ **Transparency & Limitations (5%)**
- Be honest about gaps in available information
- Note if search results don't fully address certain aspects
- Distinguish between established facts and emerging information
**Citation Format:**
- When referencing specific information: [Source Title](URL)
- For direct quotes: "Quote text" - [Source Title](URL)
- Include a "Sources" section at the end with all referenced URLs
**Response Structure:**
1. **Direct Answer** - Lead with a clear, concise response to the user's question
2. **Detailed Analysis** - Comprehensive exploration with evidence and citations
3. **Key Insights** - Important takeaways or implications
4. **Sources** - List of referenced URLs for further reading
<|eot_id|><|start_header_id|>user<|end_header_id|>
**Original User Question:** {user_query}
**Research Intelligence:**
{queries_text}
{process_summary}
**Curated Source Material:**
{selected_context}
**Task:** Provide the definitive, well-sourced answer to this question using your complete research context.
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
try:
response = search_pipeline(prompt, max_new_tokens=12288, temperature=0.2) # Even higher for comprehensive answers
generated_text = response[0]['generated_text']
# Extract assistant's response
assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1]
thinking, answer = extract_thinking_and_response(assistant_response)
return answer, thinking
except Exception as e:
print(f"Error generating final answer: {e}")
return "I encountered an error while processing the search results. Please try again.", ""
def search_agent_workflow(user_query: str, progress=gr.Progress()) -> Tuple[str, str, str]:
"""Main workflow that orchestrates the search agent"""
if not user_query.strip():
return "Please enter a search query.", "", ""
progress(0.1, desc="Initializing...")
all_thinking = []
# Step 1: Generate search queries
progress(0.2, desc="Generating search queries...")
queries, thinking1 = generate_search_queries(user_query)
if thinking1:
all_thinking.append(f"**Query Generation:**\n{thinking1}")
queries_text = "Generated queries:\n" + "\n".join(f"β’ {q}" for q in queries)
# Step 2: Search the web
progress(0.4, desc="Searching the web...")
search_results = search_web(queries)
if not search_results:
return "No search results found. Please try a different query.", queries_text, "\n\n".join(all_thinking)
# Step 3: Filter relevant results
progress(0.6, desc="Filtering relevant results...")
relevant_results, thinking2 = filter_relevant_results(user_query, queries, search_results)
if thinking2:
all_thinking.append(f"**Result Filtering:**\n{thinking2}")
# Step 4: Generate final answer
progress(0.8, desc="Generating comprehensive answer...")
final_answer, thinking3 = generate_final_answer(user_query, queries, search_results, relevant_results)
if thinking3:
all_thinking.append(f"**Answer Generation:**\n{thinking3}")
progress(1.0, desc="Complete!")
# Prepare debug info
debug_info = f"{queries_text}\n\nSelected {len(relevant_results)} relevant sources:\n"
for i, result in enumerate(relevant_results):
debug_info += f"{i+1}. {result.get('title', 'No title')} - {result.get('href', 'No URL')}\n"
thinking_display = "\n\n".join(all_thinking) if all_thinking else "No thinking process recorded."
return final_answer, debug_info, thinking_display
# Custom CSS for dark blue theme and mobile responsiveness
custom_css = """
/* Dark blue theme */
:root {
--primary-bg: #0a1628;
--secondary-bg: #1e3a5f;
--accent-bg: #2563eb;
--text-primary: #f8fafc;
--text-secondary: #cbd5e1;
--border-color: #334155;
--input-bg: #1e293b;
--button-bg: #3b82f6;
--button-hover: #2563eb;
}
/* Global styles */
.gradio-container {
background: linear-gradient(135deg, var(--primary-bg) 0%, var(--secondary-bg) 100%) !important;
color: var(--text-primary) !important;
font-family: 'Inter', 'Segoe UI', system-ui, sans-serif !important;
}
/* Mobile responsiveness */
@media (max-width: 768px) {
.gradio-container {
padding: 10px !important;
}
.gr-form {
gap: 15px !important;
}
.gr-button {
font-size: 16px !important;
padding: 12px 20px !important;
}
}
/* Input styling */
.gr-textbox textarea, .gr-textbox input {
background: var(--input-bg) !important;
border: 1px solid var(--border-color) !important;
color: var(--text-primary) !important;
border-radius: 8px !important;
}
/* Button styling */
.gr-button {
background: linear-gradient(135deg, var(--button-bg) 0%, var(--accent-bg) 100%) !important;
color: white !important;
border: none !important;
border-radius: 8px !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
.gr-button:hover {
background: linear-gradient(135deg, var(--button-hover) 0%, var(--button-bg) 100%) !important;
transform: translateY(-1px) !important;
box-shadow: 0 4px 12px rgba(59, 130, 246, 0.3) !important;
}
/* Output styling */
.gr-markdown, .gr-textbox {
background: var(--input-bg) !important;
border: 1px solid var(--border-color) !important;
border-radius: 8px !important;
color: var(--text-primary) !important;
}
/* Header styling */
.gr-markdown h1 {
color: var(--accent-bg) !important;
text-align: center !important;
margin-bottom: 20px !important;
font-size: 2.5rem !important;
font-weight: 700 !important;
}
/* Thinking section styling */
#thinking-output {
background: var(--secondary-bg) !important;
border: 1px solid var(--border-color) !important;
border-radius: 8px !important;
padding: 15px !important;
font-family: 'Fira Code', 'Monaco', monospace !important;
font-size: 0.9rem !important;
line-height: 1.4 !important;
}
/* Loading animation */
.gr-loading {
background: var(--secondary-bg) !important;
border-radius: 8px !important;
}
/* Scrollbar styling */
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-track {
background: var(--primary-bg);
}
::-webkit-scrollbar-thumb {
background: var(--accent-bg);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: var(--button-hover);
}
"""
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(
theme=gr.themes.Base(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate",
text_size="lg",
spacing_size="lg",
radius_size="md"
),
css=custom_css,
title="Just search - AI Search Agent",
head="<meta name='viewport' content='width=device-width, initial-scale=1.0'>"
) as interface:
gr.Markdown("# π Just search", elem_id="header")
gr.Markdown(
"*Part of the Just, AKA Simple series*\n\n"
"**Intelligent search agent powered by Menlo/Lucy-128k**\n\n"
"Ask any question and get comprehensive answers from the web.",
elem_id="description"
)
with gr.Row():
with gr.Column(scale=4):
query_input = gr.Textbox(
label="Your Question",
placeholder="Ask me anything... (e.g., 'What are the latest developments in AI?')",
lines=2,
elem_id="query-input"
)
with gr.Column(scale=1):
search_btn = gr.Button(
"π Search",
variant="primary",
size="lg",
elem_id="search-button"
)
with gr.Row():
answer_output = gr.Markdown(
label="Answer",
elem_id="answer-output",
height=400
)
with gr.Accordion("π€ AI Thinking Process", open=False):
thinking_output = gr.Markdown(
label="Model's Chain of Thought",
elem_id="thinking-output",
height=300
)
with gr.Accordion("π§ Debug Info", open=False):
debug_output = gr.Textbox(
label="Search Process Details",
lines=8,
elem_id="debug-output"
)
# Event handlers
search_btn.click(
fn=search_agent_workflow,
inputs=[query_input],
outputs=[answer_output, debug_output, thinking_output],
show_progress=True
)
query_input.submit(
fn=search_agent_workflow,
inputs=[query_input],
outputs=[answer_output, debug_output, thinking_output],
show_progress=True
)
# Example queries
gr.Examples(
examples=[
["What are the latest breakthroughs in quantum computing?"],
["How does climate change affect ocean currents?"],
["What are the best practices for sustainable agriculture?"],
["Explain the recent developments in renewable energy technology"],
["What are the health benefits of the Mediterranean diet?"]
],
inputs=query_input,
outputs=[answer_output, debug_output, thinking_output],
fn=search_agent_workflow,
cache_examples=False
)
gr.Markdown(
"---\n**Note:** This search agent generates multiple queries, searches the web, "
"filters results for relevance, and provides comprehensive answers. "
"Results are sourced from DuckDuckGo search."
)
return interface
def main():
"""Main function to initialize and launch the app"""
print("π Initializing Just search...")
# Initialize the model
if not initialize_model():
print("β Failed to initialize model. Please check your setup.")
return
print("β
Model initialized successfully!")
print("π Creating interface...")
# Create and launch the interface
interface = create_interface()
print("π Just search is ready!")
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
debug=True
)
if __name__ == "__main__":
main() |