#!/usr/bin/env python3 """ Just search - A Smart Search Agent using Menlo/Lucy-128k Part of the Just, AKA Simple series Built with Gradio, DuckDuckGo Search, and Hugging Face Transformers """ import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from duckduckgo_search import DDGS import json import re import time from typing import List, Dict, Tuple import spaces # Initialize the model and tokenizer globally for efficiency MODEL_NAME = "Menlo/Lucy-128k" tokenizer = None model = None search_pipeline = None def initialize_model(): """Initialize the Menlo/Lucy-128k model and tokenizer""" global tokenizer, model, search_pipeline try: tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True, max_length=131072, # 128k context length rope_scaling={"type": "linear", "factor": 1.0} # Enable extended context ) search_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto", max_new_tokens=16384, # 16k max output temperature=0.3, do_sample=True, pad_token_id=tokenizer.eos_token_id ) return True except Exception as e: print(f"Error initializing model: {e}") return False def extract_thinking_and_response(text: str) -> Tuple[str, str]: """Extract thinking process and clean response from AI output""" thinking = "" response = text # Multiple patterns for thinking extraction patterns = [ (r'(.*?)', 1), (r'(.*?)', 1), (r'(Let me think about.*?)(?=\n\n|\n[A-Z]|$)', 1), # Catch untagged thinking ] for pattern, group_idx in patterns: thinking_match = re.search(pattern, text, re.DOTALL | re.IGNORECASE) if thinking_match: thinking = thinking_match.group(group_idx).strip() response = re.sub(pattern, '', text, flags=re.DOTALL | re.IGNORECASE) break # If no thinking found but text looks like reasoning, extract it if not thinking and ('let me think' in text.lower() or 'i need to consider' in text.lower()): lines = text.split('\n') thinking_lines = [] response_lines = [] in_thinking = False for line in lines: lower_line = line.lower().strip() if any(phrase in lower_line for phrase in ['let me think', 'i need to consider', 'first,', 'the user is asking']): in_thinking = True thinking_lines.append(line) elif in_thinking and (line.strip().startswith(('•', '-', '1.', '2.', '3.')) or len(line.strip()) < 5): in_thinking = False response_lines.append(line) elif in_thinking: thinking_lines.append(line) else: response_lines.append(line) if thinking_lines: thinking = '\n'.join(thinking_lines).strip() response = '\n'.join(response_lines).strip() # Clean up the response response = re.sub(r'^(Assistant:|AI:|Response:|Answer:)\s*', '', response.strip()) response = re.sub(r'\[INST\].*?\[\/INST\]', '', response, flags=re.DOTALL) response = re.sub(r'<\|.*?\|>', '', response) # Remove any remaining thinking artifacts from response response = re.sub(r'Let me think.*?(?=\n\n|\n[A-Z]|$)', '', response, flags=re.DOTALL | re.IGNORECASE) response = re.sub(r'I need to consider.*?(?=\n\n|\n[A-Z]|$)', '', response, flags=re.DOTALL | re.IGNORECASE) return thinking.strip(), response.strip() def clean_response(text: str) -> str: """Clean up the AI response to extract just the relevant content""" _, response = extract_thinking_and_response(text) return response @spaces.GPU def generate_search_queries(user_query: str) -> Tuple[List[str], str]: """Generate multiple search queries based on user input using AI""" prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are an expert search query strategist. Your task is to generate diverse, effective search queries that will find the most comprehensive information to answer the user's question. **Your Approach:** 1. Analyze the user's question to identify key concepts, entities, and intent 2. Consider different angles: current news, technical details, background context, expert opinions 3. Use varied terminology: formal terms, common language, industry jargon, synonyms 4. Target different types of sources: news sites, academic papers, official documents, forums **Query Requirements:** - Generate exactly 4 distinct search queries - Each query should be 3-8 words long - Optimize for search engine effectiveness - Cover different aspects or perspectives of the topic - Use specific, relevant keywords **Examples:** User: "What is the current status of artificial intelligence regulation?" Queries: AI regulation 2024 legislation artificial intelligence policy updates government AI rules current machine learning regulation news User: "How does climate change affect coral reefs?" Queries: climate change coral reef impact ocean warming coral bleaching coral reef ecosystem changes marine biodiversity climate effects <|eot_id|><|start_header_id|>user<|end_header_id|> User question: {user_query} Generate 4 strategic search queries: <|eot_id|><|start_header_id|>assistant<|end_header_id|>""" try: response = search_pipeline(prompt, max_new_tokens=150, temperature=0.1) generated_text = response[0]['generated_text'] # Extract assistant's response assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1] thinking, cleaned_response = extract_thinking_and_response(assistant_response) # Split and clean queries lines = [line.strip() for line in cleaned_response.split('\n') if line.strip()] # Filter to get actual search queries (remove meta-commentary) queries = [] for line in lines: # Skip lines that look like explanations or meta-commentary if any(skip_word in line.lower() for skip_word in [ 'user', 'question', 'query', 'search', 'generate', 'here are', 'these are', 'i will', 'let me', 'first', 'second', 'third', 'fourth', 'based on', 'the user', 'example' ]): continue # Skip lines with too many words (likely explanations) if len(line.split()) > 8: continue # Skip numbered/bulleted lines line_clean = re.sub(r'^\d+[\.\)]\s*', '', line) line_clean = re.sub(r'^[\-\*\•]\s*', '', line_clean) line_clean = line_clean.strip('"\'') if len(line_clean) > 3 and len(line_clean.split()) >= 2: queries.append(line_clean) # If we didn't get good queries, fall back to simple variations if len(queries) < 2: queries = [ user_query, f"{user_query} 2024", f"{user_query} news", f"{user_query} latest" ] return queries[:4], thinking except Exception as e: print(f"Error generating queries: {e}") # Fallback to simple query variations return [user_query, f"{user_query} 2024", f"{user_query} news", f"{user_query} latest"], "" def search_web(queries: List[str]) -> List[Dict]: """Search the web using DuckDuckGo with multiple queries""" all_results = [] ddgs = DDGS() for query in queries: try: results = ddgs.text(query, max_results=5, region='wt-wt', safesearch='moderate') for result in results: result['search_query'] = query all_results.append(result) time.sleep(0.5) # Rate limiting except Exception as e: print(f"Error searching for '{query}': {e}") continue # Remove duplicates based on URL seen_urls = set() unique_results = [] for result in all_results: if result['href'] not in seen_urls: seen_urls.add(result['href']) unique_results.append(result) return unique_results[:15] # Return max 15 results @spaces.GPU def filter_relevant_results(user_query: str, generated_queries: List[str], search_results: List[Dict]) -> Tuple[List[Dict], str]: """Use AI to filter and rank search results by relevance""" if not search_results: return [], "" # Prepare results summary for AI results_text = "" for i, result in enumerate(search_results[:15]): # Increased limit for better coverage results_text += f"{i+1}. Title: {result.get('title', 'No title')}\n" results_text += f" URL: {result.get('href', 'No URL')}\n" results_text += f" Snippet: {result.get('body', 'No description')[:300]}...\n" results_text += f" Search Query: {result.get('search_query', 'Unknown')}\n\n" queries_text = "\n".join(f"• {q}" for q in generated_queries) prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are an expert information analyst specializing in search result evaluation. Your mission is to identify the highest-quality, most relevant sources that will enable a comprehensive answer to the user's question. **Your Analysis Framework:** **1. Relevance Assessment (40% weight):** - How directly does the content address the user's specific question? - Does it contain factual information needed for the answer? - Is it focused on the core topic or just tangentially related? **2. Source Quality & Authority (25% weight):** - Is this from a credible, authoritative source? - Does the source have expertise in this domain? - Is it from official organizations, established media, academic institutions, or verified experts? **3. Information Completeness (20% weight):** - Does the source provide comprehensive coverage of the topic? - Are there specific details, data, or insights that add value? - Does it cover multiple aspects of the question? **4. Recency & Timeliness (10% weight):** - Is the information current and up-to-date? - For time-sensitive topics, prioritize recent sources - For established facts, older authoritative sources are acceptable **5. Strategic Value (5% weight):** - Does this complement other selected sources well? - Does it provide unique perspectives or fill information gaps? **Task Instructions:** 1. Carefully analyze each search result against these criteria 2. Consider how the results work together to provide comprehensive coverage 3. Select exactly 5 results that will enable the best possible answer 4. Prioritize quality over quantity - better to have fewer excellent sources **Output Format:** Return only the numbers of your selected results, comma-separated (e.g., "1, 3, 7, 12, 14") <|eot_id|><|start_header_id|>user<|end_header_id|> **Original User Question:** {user_query} **Context - Generated Search Queries:** {queries_text} **Search Results for Analysis:** {results_text} **Your Selection (5 most valuable results):** <|eot_id|><|start_header_id|>assistant<|end_header_id|>""" try: response = search_pipeline(prompt, max_new_tokens=300, temperature=0.1) generated_text = response[0]['generated_text'] # Extract assistant's response assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1] thinking, cleaned_response = extract_thinking_and_response(assistant_response) # Extract numbers numbers = re.findall(r'\d+', cleaned_response) selected_indices = [int(n) - 1 for n in numbers if int(n) <= len(search_results)] return [search_results[i] for i in selected_indices if 0 <= i < len(search_results)][:5], thinking except Exception as e: print(f"Error filtering results: {e}") return search_results[:5], "" # Fallback to first 5 results @spaces.GPU def generate_final_answer(user_query: str, generated_queries: List[str], all_search_results: List[Dict], selected_results: List[Dict]) -> Tuple[str, str]: """Generate final answer based on complete search context""" if not selected_results: return "I couldn't find relevant information to answer your question. Please try rephrasing your query.", "" # Prepare context from selected results selected_context = "" for i, result in enumerate(selected_results): selected_context += f"**Source {i+1}:** {result.get('title', 'Unknown')}\n" selected_context += f"**Content:** {result.get('body', 'No content available')}\n" selected_context += f"**URL:** {result.get('href', 'No URL')}\n" selected_context += f"**Found via query:** {result.get('search_query', 'Unknown')}\n\n" # Summary of the search process queries_text = "\n".join(f"• {q}" for q in generated_queries) process_summary = f""" **Search Process Summary:** - Generated {len(generated_queries)} targeted search queries - Found {len(all_search_results)} total search results - Filtered down to {len(selected_results)} most relevant sources """ prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are a world-class research synthesist and expert communicator. You have access to comprehensive search intelligence and must craft the definitive answer to the user's question. **Your Complete Context:** - Original user question and intent - Strategic search queries designed to find comprehensive information - Curated high-quality sources selected for maximum relevance and authority - Full visibility into the research methodology used **Answer Quality Standards:** 🎯 **Precision & Relevance (25%)** - Address the user's exact question directly and completely - Stay focused on their specific information needs - Avoid tangential information that doesn't serve the core query 📚 **Source Integration & Synthesis (25%)** - Weave information from multiple sources into a cohesive narrative - Identify patterns, agreements, and contradictions across sources - Present a unified understanding rather than separate source summaries 🔍 **Accuracy & Verification (20%)** - Use only information explicitly stated in the provided sources - Clearly attribute claims to specific sources with citations - Acknowledge when information is limited or when sources conflict 📖 **Structure & Clarity (15%)** - Organize information logically with clear flow - Use headings, bullet points, or sections when helpful - Write in clear, accessible language appropriate for the topic 🌟 **Completeness & Context (10%)** - Provide sufficient background context for understanding - Address multiple dimensions of the question when relevant - Explain significance and implications of the findings ⚡ **Transparency & Limitations (5%)** - Be honest about gaps in available information - Note if search results don't fully address certain aspects - Distinguish between established facts and emerging information **Citation Format:** - When referencing specific information: [Source Title](URL) - For direct quotes: "Quote text" - [Source Title](URL) - Include a "Sources" section at the end with all referenced URLs **Response Structure:** 1. **Direct Answer** - Lead with a clear, concise response to the user's question 2. **Detailed Analysis** - Comprehensive exploration with evidence and citations 3. **Key Insights** - Important takeaways or implications 4. **Sources** - List of referenced URLs for further reading <|eot_id|><|start_header_id|>user<|end_header_id|> **Original User Question:** {user_query} **Research Intelligence:** {queries_text} {process_summary} **Curated Source Material:** {selected_context} **Task:** Provide the definitive, well-sourced answer to this question using your complete research context. <|eot_id|><|start_header_id|>assistant<|end_header_id|>""" try: response = search_pipeline(prompt, max_new_tokens=12288, temperature=0.2) # Even higher for comprehensive answers generated_text = response[0]['generated_text'] # Extract assistant's response assistant_response = generated_text.split('<|start_header_id|>assistant<|end_header_id|>')[-1] thinking, answer = extract_thinking_and_response(assistant_response) return answer, thinking except Exception as e: print(f"Error generating final answer: {e}") return "I encountered an error while processing the search results. Please try again.", "" def search_agent_workflow(user_query: str, progress=gr.Progress()) -> Tuple[str, str, str]: """Main workflow that orchestrates the search agent""" if not user_query.strip(): return "Please enter a search query.", "", "" progress(0.1, desc="Initializing...") all_thinking = [] # Step 1: Generate search queries progress(0.2, desc="Generating search queries...") queries, thinking1 = generate_search_queries(user_query) if thinking1: all_thinking.append(f"**Query Generation:**\n{thinking1}") queries_text = "Generated queries:\n" + "\n".join(f"• {q}" for q in queries) # Step 2: Search the web progress(0.4, desc="Searching the web...") search_results = search_web(queries) if not search_results: return "No search results found. Please try a different query.", queries_text, "\n\n".join(all_thinking) # Step 3: Filter relevant results progress(0.6, desc="Filtering relevant results...") relevant_results, thinking2 = filter_relevant_results(user_query, queries, search_results) if thinking2: all_thinking.append(f"**Result Filtering:**\n{thinking2}") # Step 4: Generate final answer progress(0.8, desc="Generating comprehensive answer...") final_answer, thinking3 = generate_final_answer(user_query, queries, search_results, relevant_results) if thinking3: all_thinking.append(f"**Answer Generation:**\n{thinking3}") progress(1.0, desc="Complete!") # Prepare debug info debug_info = f"{queries_text}\n\nSelected {len(relevant_results)} relevant sources:\n" for i, result in enumerate(relevant_results): debug_info += f"{i+1}. {result.get('title', 'No title')} - {result.get('href', 'No URL')}\n" thinking_display = "\n\n".join(all_thinking) if all_thinking else "No thinking process recorded." return final_answer, debug_info, thinking_display # Custom CSS for dark blue theme and mobile responsiveness custom_css = """ /* Dark blue theme */ :root { --primary-bg: #0a1628; --secondary-bg: #1e3a5f; --accent-bg: #2563eb; --text-primary: #f8fafc; --text-secondary: #cbd5e1; --border-color: #334155; --input-bg: #1e293b; --button-bg: #3b82f6; --button-hover: #2563eb; } /* Global styles */ .gradio-container { background: linear-gradient(135deg, var(--primary-bg) 0%, var(--secondary-bg) 100%) !important; color: var(--text-primary) !important; font-family: 'Inter', 'Segoe UI', system-ui, sans-serif !important; } /* Mobile responsiveness */ @media (max-width: 768px) { .gradio-container { padding: 10px !important; } .gr-form { gap: 15px !important; } .gr-button { font-size: 16px !important; padding: 12px 20px !important; } } /* Input styling */ .gr-textbox textarea, .gr-textbox input { background: var(--input-bg) !important; border: 1px solid var(--border-color) !important; color: var(--text-primary) !important; border-radius: 8px !important; } /* Button styling */ .gr-button { background: linear-gradient(135deg, var(--button-bg) 0%, var(--accent-bg) 100%) !important; color: white !important; border: none !important; border-radius: 8px !important; font-weight: 600 !important; transition: all 0.3s ease !important; } .gr-button:hover { background: linear-gradient(135deg, var(--button-hover) 0%, var(--button-bg) 100%) !important; transform: translateY(-1px) !important; box-shadow: 0 4px 12px rgba(59, 130, 246, 0.3) !important; } /* Output styling */ .gr-markdown, .gr-textbox { background: var(--input-bg) !important; border: 1px solid var(--border-color) !important; border-radius: 8px !important; color: var(--text-primary) !important; } /* Header styling */ .gr-markdown h1 { color: var(--accent-bg) !important; text-align: center !important; margin-bottom: 20px !important; font-size: 2.5rem !important; font-weight: 700 !important; } /* Thinking section styling */ #thinking-output { background: var(--secondary-bg) !important; border: 1px solid var(--border-color) !important; border-radius: 8px !important; padding: 15px !important; font-family: 'Fira Code', 'Monaco', monospace !important; font-size: 0.9rem !important; line-height: 1.4 !important; } /* Loading animation */ .gr-loading { background: var(--secondary-bg) !important; border-radius: 8px !important; } /* Scrollbar styling */ ::-webkit-scrollbar { width: 8px; } ::-webkit-scrollbar-track { background: var(--primary-bg); } ::-webkit-scrollbar-thumb { background: var(--accent-bg); border-radius: 4px; } ::-webkit-scrollbar-thumb:hover { background: var(--button-hover); } """ def create_interface(): """Create the Gradio interface""" with gr.Blocks( theme=gr.themes.Base( primary_hue="blue", secondary_hue="slate", neutral_hue="slate", text_size="lg", spacing_size="lg", radius_size="md" ), css=custom_css, title="Just search - AI Search Agent", head="" ) as interface: gr.Markdown("# 🔍 Just search", elem_id="header") gr.Markdown( "*Part of the Just, AKA Simple series*\n\n" "**Intelligent search agent powered by Menlo/Lucy-128k**\n\n" "Ask any question and get comprehensive answers from the web.", elem_id="description" ) with gr.Row(): with gr.Column(scale=4): query_input = gr.Textbox( label="Your Question", placeholder="Ask me anything... (e.g., 'What are the latest developments in AI?')", lines=2, elem_id="query-input" ) with gr.Column(scale=1): search_btn = gr.Button( "🔎 Search", variant="primary", size="lg", elem_id="search-button" ) with gr.Row(): answer_output = gr.Markdown( label="Answer", elem_id="answer-output", height=400 ) with gr.Accordion("🤔 AI Thinking Process", open=False): thinking_output = gr.Markdown( label="Model's Chain of Thought", elem_id="thinking-output", height=300 ) with gr.Accordion("🔧 Debug Info", open=False): debug_output = gr.Textbox( label="Search Process Details", lines=8, elem_id="debug-output" ) # Event handlers search_btn.click( fn=search_agent_workflow, inputs=[query_input], outputs=[answer_output, debug_output, thinking_output], show_progress=True ) query_input.submit( fn=search_agent_workflow, inputs=[query_input], outputs=[answer_output, debug_output, thinking_output], show_progress=True ) # Example queries gr.Examples( examples=[ ["What are the latest breakthroughs in quantum computing?"], ["How does climate change affect ocean currents?"], ["What are the best practices for sustainable agriculture?"], ["Explain the recent developments in renewable energy technology"], ["What are the health benefits of the Mediterranean diet?"] ], inputs=query_input, outputs=[answer_output, debug_output, thinking_output], fn=search_agent_workflow, cache_examples=False ) gr.Markdown( "---\n**Note:** This search agent generates multiple queries, searches the web, " "filters results for relevance, and provides comprehensive answers. " "Results are sourced from DuckDuckGo search." ) return interface def main(): """Main function to initialize and launch the app""" print("🚀 Initializing Just search...") # Initialize the model if not initialize_model(): print("❌ Failed to initialize model. Please check your setup.") return print("✅ Model initialized successfully!") print("🌐 Creating interface...") # Create and launch the interface interface = create_interface() print("🎉 Just search is ready!") interface.launch( server_name="0.0.0.0", server_port=7860, share=True, show_error=True, debug=True ) if __name__ == "__main__": main()