Spaces:
Runtime error
Runtime error
# --------------------------------------------------------------------------------------- | |
# Imports and Options | |
# --------------------------------------------------------------------------------------- | |
import streamlit as st | |
import pandas as pd | |
import requests | |
import re | |
import fitz # PyMuPDF | |
import io | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from mlx_vlm import load, generate | |
from mlx_vlm.prompt_utils import apply_chat_template | |
from mlx_vlm.utils import load_config, stream_generate | |
from docling_core.types.doc.document import DocTagsDocument, DoclingDocument | |
# Set Streamlit to wide mode | |
# st.set_page_config(layout="wide") | |
# --------------------------------------------------------------------------------------- | |
# API Configuration | |
# --------------------------------------------------------------------------------------- | |
API_URL = "https://api.stack-ai.com/inference/v0/run/2df89a6c-a4af-4576-880e-27058e498f02/67acad8b0603ba4631db38e7" | |
headers = { | |
'Authorization': 'Bearer a9e4979e-cdbe-49ea-a193-53562a784805', | |
'Content-Type': 'application/json' | |
} | |
# --------------------------------------------------------------------------------------- | |
# Survey Analysis Class | |
# --------------------------------------------------------------------------------------- | |
class SurveyAnalysis: | |
def __init__(self, api_key=None): | |
self.api_key = api_key | |
def prepare_llm_input(self, survey_response, topics): | |
# Create topic description string from user input | |
topic_descriptions = "\n".join([f"- **{topic}**: {description}" for topic, description in topics.items()]) | |
llm_input = f""" | |
Your task is to review PDF docling and extract information related to the provided topics. Here are the topic descriptions: | |
{topic_descriptions} | |
**Instructions:** | |
- Extract and summarize the PDF focusing only on the provided topics. | |
- If a topic is not mentioned in the notes, it should not be included in the Topic_Summary. | |
- Use **exact quotes** from the original text for each point in your Topic_Summary. | |
- Exclude erroneous content. | |
- Do not add additional explanations or instructions. | |
**Format your response as follows:** | |
[Topic] | |
- "Exact quote" | |
- "Exact quote" | |
- "Exact quote" | |
**Meeting Notes:** | |
{survey_response} | |
""" | |
return llm_input | |
def query_api(self, payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
def extract_meeting_notes(self, response): | |
output = response.get('outputs', {}).get('out-0', '') | |
return output | |
def process_dataframe(self, df, topics): | |
results = [] | |
for _, row in df.iterrows(): | |
llm_input = self.prepare_llm_input(row['Document_Text'], topics) | |
payload = { | |
"user_id": "<USER or Conversation ID>", | |
"in-0": llm_input | |
} | |
response = self.query_api(payload) | |
meeting_notes = self.extract_meeting_notes(response) | |
results.append({ | |
'Document_Text': row['Document_Text'], | |
'Topic_Summary': meeting_notes | |
}) | |
result_df = pd.DataFrame(results) | |
df = df.reset_index(drop=True) | |
return pd.concat([df, result_df[['Topic_Summary']]], axis=1) | |
# --------------------------------------------------------------------------------------- | |
# Function to Extract Excerpts | |
# --------------------------------------------------------------------------------------- | |
def extract_excerpts(processed_df): | |
new_rows = [] | |
for _, row in processed_df.iterrows(): | |
Topic_Summary = row['Topic_Summary'] | |
# Split the Topic_Summary by topic | |
sections = re.split(r'\n(?=\[)', Topic_Summary) | |
for section in sections: | |
# Extract the topic | |
topic_match = re.match(r'\[([^\]]+)\]', section) | |
if topic_match: | |
topic = topic_match.group(1) | |
# Extract all excerpts within the section | |
excerpts = re.findall(r'- "([^"]+)"', section) | |
for excerpt in excerpts: | |
new_rows.append({ | |
'Document_Text': row['Document_Text'], | |
'Topic_Summary': row['Topic_Summary'], | |
'Excerpt': excerpt, | |
'Topic': topic | |
}) | |
return pd.DataFrame(new_rows) | |
#------------------------------------------------------------------------ | |
# Streamlit Configuration | |
#------------------------------------------------------------------------ | |
# Set page configuration | |
st.set_page_config( | |
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App", | |
page_icon=":bar_chart:", | |
layout="centered", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get Help': 'mailto:clevesse@steelcase.com', | |
'About': "This app is built to support PDF analysis" | |
} | |
) | |
#------------------------------------------------------------------------ | |
# Sidebar | |
#------------------------------------------------------------------------ | |
# Sidebar with image | |
with st.sidebar: | |
# Set the desired width in pixels | |
image_width = 300 | |
# Define the path to the image | |
# image_path = "steelcase_small.png" | |
image_path = "/Users/clevesse/Documents/VSC_Code/PDF_Extraction/PDF_Extraction_streamlit/steelcase_small.png" | |
# Display the image | |
st.image(image_path, width=image_width) | |
# Additional sidebar content | |
with st.expander("**WorkSpace Futures**", expanded=True): | |
st.write(""" | |
Strategic Market Intelligence | |
Director: Amy Willard | |
- **Support**: Cheyne LeVesseur PhD | |
- **Email**: clevesse@steelcase.com | |
""") | |
st.divider() | |
st.subheader('Instructions') | |
Instructions = """ | |
- **Step 1**: Upload your PDF file. | |
- **Step 2**: Review the processed meeting notes with extracted excerpts and classifications. | |
- **Step 3**: Review topic descriptions. | |
- **Step 4**: Review topic distribution and frequency. | |
- **Step 5**: Review bar charts of topics. | |
- **Step 6**: Download the processed data as a CSV file. | |
""" | |
st.markdown(Instructions) | |
# Load SmolDocling model (mlx_vlm version) | |
def load_smol_docling(): | |
model_path = "ds4sd/SmolDocling-256M-preview-mlx-bf16" | |
model, processor = load(model_path) | |
config = load_config(model_path) | |
return model, processor, config | |
model, processor, config = load_smol_docling() | |
# Convert PDF to images | |
def convert_pdf_to_images(pdf_file): | |
images = [] | |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf") | |
for page_number in range(len(doc)): | |
page = doc.load_page(page_number) | |
pix = page.get_pixmap(dpi=300) # Higher DPI for clarity | |
img_data = pix.tobytes("png") | |
image = Image.open(io.BytesIO(img_data)) | |
images.append(image) | |
return images | |
# Extract structured markdown text using SmolDocling (mlx_vlm) | |
def extract_markdown_from_image(image): | |
prompt = "Convert this page to docling." | |
formatted_prompt = apply_chat_template(processor, config, prompt, num_images=1) | |
output = "" | |
for token in stream_generate( | |
model, processor, formatted_prompt, [image], max_tokens=4096, verbose=False): | |
output += token.text | |
if "</doctag>" in token.text: | |
break | |
# Convert DocTags to Markdown | |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([output], [image]) | |
doc = DoclingDocument(name="ExtractedDocument") | |
doc.load_from_doctags(doctags_doc) | |
markdown_text = doc.export_to_markdown() | |
return markdown_text | |
# Streamlit UI | |
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App") | |
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"]) | |
if uploaded_file: | |
with st.spinner("Processing PDF..."): | |
images = convert_pdf_to_images(uploaded_file) | |
markdown_texts = [] | |
for idx, image in enumerate(images): | |
markdown_text = extract_markdown_from_image(image) | |
markdown_texts.append(markdown_text) | |
df = pd.DataFrame({'Document_Text': markdown_texts}) | |
st.success("PDF processed successfully!") | |
# Check if extraction was successful | |
if df.empty or df['Document_Text'].isnull().all(): | |
st.error("No meaningful text extracted from the PDF.") | |
st.stop() | |
st.markdown("### Extracted Markdown Preview") | |
st.write(df.head()) | |
# --------------------------------------------------------------------------------------- | |
# User Input for Topics | |
# --------------------------------------------------------------------------------------- | |
st.markdown("### Enter Topics and Descriptions") | |
num_topics = st.number_input("Number of topics", min_value=1, max_value=10, value=1, step=1) | |
topics = {} | |
for i in range(num_topics): | |
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}") | |
description = st.text_area(f"Topic {i+1} Description", key=f"description_{i}") | |
if topic and description: | |
topics[topic] = description | |
# Add a button to execute the analysis | |
if st.button("Run Analysis"): | |
if not topics: | |
st.warning("Please enter at least one topic and description.") | |
st.stop() | |
# --------------------------------------------------------------------------------------- | |
# Your existing SurveyAnalysis and extract_excerpts functions remain unchanged here: | |
# --------------------------------------------------------------------------------------- | |
analyzer = SurveyAnalysis() | |
processed_df = analyzer.process_dataframe(df, topics) | |
df_VIP_extracted = extract_excerpts(processed_df) | |
required_columns = ['Document_Text', 'Topic_Summary', 'Excerpt', 'Topic'] | |
missing_columns = [col for col in required_columns if col not in df_VIP_extracted.columns] | |
if missing_columns: | |
st.error(f"Missing columns after processing: {missing_columns}") | |
st.stop() | |
df_VIP_extracted = df_VIP_extracted[required_columns] | |
st.markdown("### Processed Meeting Notes") | |
st.dataframe(df_VIP_extracted) | |
st.write(f"**Number of meeting notes analyzed:** {len(df)}") | |
st.write(f"**Number of excerpts extracted:** {len(df_VIP_extracted)}") | |
# CSV download | |
csv = df_VIP_extracted.to_csv(index=False) | |
st.download_button( | |
"Download data as CSV", | |
data=csv, | |
file_name='extracted_meeting_notes.csv', | |
mime='text/csv' | |
) | |
# Topic distribution visualization | |
topic_counts = df_VIP_extracted['Topic'].value_counts() | |
frequency_table = pd.DataFrame({'Topic': topic_counts.index, 'Count': topic_counts.values}) | |
frequency_table['Percentage'] = (frequency_table['Count'] / frequency_table['Count'].sum() * 100).round(0) | |
st.markdown("### Topic Distribution") | |
st.dataframe(frequency_table) | |
fig, ax = plt.subplots(figsize=(10, 5)) | |
ax.bar(frequency_table['Topic'], frequency_table['Count'], color='#3d9aa1') | |
ax.set_ylabel('Count') | |
ax.set_title('Frequency of Topics') | |
st.pyplot(fig) | |
else: | |
st.info("Please upload a PDF file to begin.") |