Spaces:
Running
Running
from typing import Dict | |
import numpy as np | |
import torch | |
from PIL import Image | |
from torchmetrics.image.arniqa import ARNIQA | |
class ARNIQAMetric: | |
def __init__(self): | |
self.device = torch.device( | |
"cuda" | |
if torch.cuda.is_available() | |
else "mps" | |
if torch.backends.mps.is_available() | |
else "cpu" | |
) | |
self.metric = ARNIQA( | |
regressor_dataset="koniq10k", | |
reduction="mean", | |
normalize=True, | |
autocast=False, | |
) | |
self.metric.to(self.device) | |
def name(self) -> str: | |
return "arniqa" | |
def compute_score(self, image: Image.Image, prompt: str) -> Dict[str, float]: | |
image_tensor = ( | |
torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255.0 | |
) | |
image_tensor = image_tensor.unsqueeze(0).to(self.device) | |
score = self.metric(image_tensor) | |
return {"arniqa": score.item()} | |